Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andrea L. Lewellyn is active.

Publication


Featured researches published by Andrea L. Lewellyn.


Current Biology | 2000

The critical role of the MAP kinase pathway in meiosis II in Xenopus oocytes is mediated by p90Rsk

Stefan D. Gross; Markus S. Schwab; Frédéric E. Taieb; Andrea L. Lewellyn; Yue-Wei Qian; James L. Maller

BACKGROUND During oocyte maturation in Xenopus, progesterone induces entry into meiosis I, and the M phases of meiosis I and II occur consecutively without an intervening S phase. The mitogen-activated protein (MAP) kinase is activated during meiotic entry, and it has been suggested that the linkage of M phases reflects activation of the MAP kinase pathway and the failure to fully degrade cyclin B during anaphase I. To analyze the function of the MAP kinase pathway in oocyte maturation, we used U0126, a potent inhibitor of MAP kinase kinase, and a constitutively active mutant of the protein kinase p90(Rsk), a MAP kinase target. RESULTS Even with complete inhibition of the MAP kinase pathway by U0126, up to 90% of oocytes were able to enter meiosis I after progesterone treatment, most likely through activation of the phosphatase Cdc25C by the polo-like kinase Plx1. Subsequently, however, U0126-treated oocytes failed to form metaphase I spindles, failed to reaccumulate cyclin B to a high level and failed to hyperphosphorylate Cdc27, a component of the anaphase-promoting complex (APC) that controls cyclin B degradation. Such oocytes entered S phase rather than meiosis II. U0126-treated oocytes expressing a constitutively active form of p90(Rsk) were able to reaccumulate cyclin B, hyperphosphorylate Cdc27 and form metaphase spindles in the absence of detectable MAP kinase activity. CONCLUSIONS The MAP kinase pathway is not essential for entry into meiosis I in Xenopus but is required during the onset of meiosis II to suppress entry into S phase, to regulate the APC so as to support cyclin B accumulation, and to support spindle formation. Moreover, one substrate of MAP kinase, p90(Rsk), is sufficient to mediate these effects during oocyte maturation.


Current Biology | 2001

Activation of the anaphase-promoting complex and degradation of cyclin B is not required for progression from Meiosis I to II in Xenopus oocytes.

Frédéric E. Taieb; Stefan D. Gross; Andrea L. Lewellyn; James L. Maller

Sister chromatid separation and cyclin degradation in mitosis depend on the association of the anaphase-promoting complex (APC) with the Fizzy protein (Cdc20), leading to the metaphase/anaphase transition and exit from mitosis [1--3]. In Xenopus, after metaphase of the first meiotic division, only partial cyclin degradation occurs, and chromosome segregation during anaphase I proceeds without sister chromatid separation [4--7]. We investigated the role of xFizzy during meiosis using an antisense depletion approach. xFizzy accumulates to high levels in Meiosis I, and injection of antisense oligonucleotides to xFizzy blocks nearly all APC-mediated cyclin B degradation and Cdc2/cyclin B (MPF) inactivation between Meiosis I and II. However, even without APC activation, xFizzy-ablated oocytes progress to Meiosis II as shown by cyclin E synthesis, further accumulation of cyclin B, and evolution of the metaphase I spindle to a metaphase II spindle via a disc-shaped aggregate of microtubules known to follow anaphase I [8]. Inhibition of the MAPK pathway by U0126 in antisense-injected oocytes prevents cyclin B accumulation beyond the level that is present at metaphase I. Full synthesis and accumulation can be restored in the presence of U0126 by the expression of a constitutively active form of the MAPK target, p90(Rsk). Thus, p90(Rsk) is sufficient not only to partially inhibit APC activity [7], but also to stimulate cyclin B synthesis in Meiosis II.


Current Biology | 2001

Bub1 is activated by the protein kinase p90 Rsk during Xenopus oocyte maturation

Markus S. Schwab; B.Tibor Roberts; Stefan D. Gross; Brian Tunquist; Frédéric E. Taieb; Andrea L. Lewellyn; James L. Maller

BACKGROUND The kinetochore attachment (spindle assembly) checkpoint arrests cells in metaphase to prevent exit from mitosis until all the chromosomes are aligned properly at the metaphase plate. The checkpoint operates by preventing activation of the anaphase-promoting complex (APC), which triggers anaphase by degrading mitotic cyclins and other proteins. This checkpoint is active during normal mitosis and upon experimental disruption of the mitotic spindle. In yeast, the serine/threonine protein kinase Bub1 and the WD-repeat protein Bub3 are elements of a signal transduction cascade that regulates the kinetochore attachment checkpoint. In mammalian cells, activated MAPK is present on kinetochores during mitosis and activity is upregulated by the spindle assembly checkpoint. In vertebrate unfertilized eggs, a special form of meiotic metaphase arrest by cytostatic factor (CSF) is mediated by MAPK activation of the protein kinase p90(Rsk), which leads to inhibition of the APC. However, it is not known whether CSF-dependent metaphase arrest caused by p90(Rsk) involves components of the spindle assembly checkpoint. RESULTS xBub1 is present in resting oocytes and its protein level increases slightly during oocyte maturation and early embryogenesis. In Xenopus oocytes, Bub1 is localized to kinetochores during both meiosis I and meiosis II, and the electrophoretic mobility of Bub1 upon SDS-PAGE decreases during meiosis I, reflecting phosphorylation and activation of the enzyme. The activation of Bub1 can be induced in interphase egg extracts by selective stimulation of the MAPK pathway by c-Mos, a MAPKKK. In oocytes treated with the MEK1 inhibitor U0126, the MAPK pathway does not become activated, and Bub1 remains in its low-activity, unshifted form. Injection of a constitutively active target of MAPK, the protein kinase p90(Rsk), restores the activation of Bub1 in the presence of U0126. Moreover, purified p90(Rsk) phosphorylates Bub1 in vitro and increases its protein kinase activity. CONCLUSIONS Bub1, an upstream component of the kinetochore attachment checkpoint, is activated during meiosis in Xenopus in a MAPK-dependent manner. Moreover, a single substrate of MAPK, p90(Rsk), is sufficient to activate Bub1 in vitro and in vivo. These results indicate that in vertebrate eggs, kinetochore attachment/spindle assembly checkpoint proteins, including Bub1, are downstream of p90(Rsk) and may be effectors of APC inhibition and CSF-dependent metaphase arrest by p90(Rsk).


Journal of Cell Biology | 2003

Spindle checkpoint proteins Mad1 and Mad2 are required for cytostatic factor–mediated metaphase arrest

Brian Tunquist; Patrick A. Eyers; Lin G. Chen; Andrea L. Lewellyn; James L. Maller

In cells containing disrupted spindles, the spindle assembly checkpoint arrests the cell cycle in metaphase. The budding uninhibited by benzimidazole (Bub) 1, mitotic arrest-deficient (Mad) 1, and Mad2 proteins promote this checkpoint through sustained inhibition of the anaphase-promoting complex/cyclosome. Vertebrate oocytes undergoing meiotic maturation arrest in metaphase of meiosis II due to a cytoplasmic activity termed cytostatic factor (CSF), which appears not to be regulated by spindle dynamics. Here, we show that microinjection of Mad1 or Mad2 protein into early Xenopus laevis embryos causes metaphase arrest like that caused by Mos. Microinjection of antibodies to either Mad1 or Mad2 into maturing oocytes blocks the establishment of CSF arrest in meiosis II, and immunodepletion of either protein blocked the establishment of CSF arrest by Mos in egg extracts. A Mad2 mutant unable to oligomerize (Mad2 R133A) did not cause cell cycle arrest in blastomeres or in egg extracts. Once CSF arrest has been established, maintenance of metaphase arrest requires Mad1, but not Mad2 or Bub1. These results suggest a model in which CSF arrest by Mos is mediated by the Mad1 and Mad2 proteins in a manner distinct from the spindle checkpoint.


Current Biology | 2008

Spindle Pole Regulation by a Discrete Eg5-Interacting Domain in TPX2

Frank Eckerdt; Patrick A. Eyers; Andrea L. Lewellyn; Claude Prigent; James L. Maller

Targeting protein for Xklp2 (TPX2) activates the Ser/Thr kinase Aurora A in mitosis and targets it to the mitotic spindle [1, 2]. These effects on Aurora A are mediated by the N-terminal domain of TPX2, whereas a C-terminal fragment has been reported to affect microtubule nucleation [3]. Using the Xenopus system, we identified a novel role of TPX2 during mitosis. Injection of TPX2 or its C terminus (TPX2-CT) into blastomeres of two-cell embryos led to potent cleavage arrest. Despite cleavage arrest, TPX2-injected embryos biochemically undergo multiple rounds of DNA synthesis and mitosis, and arrested blastomeres have abnormal spindles, clustered centrosomes, and an apparent failure of cytokinesis. In Xenopus S3 cells, transfection of TPX2-FL causes spindle collapse, whereas TPX2-CT blocks pole segregation, resulting in apposing spindle poles with no evident displacement of Aurora A. Analysis of TPX2-CT deletion peptides revealed that only constructs able to interact with the class 5 kinesin-like motor protein Eg5 induce the spindle phenotypes. Importantly, injection of Eg5 into TPX2-CT-arrested blastomeres causes resumption of cleavage. These results define a discrete domain within the C terminus of TPX2 that exerts a novel Eg5-dependent function in spindle pole segregation.


Current Biology | 2010

Repo-Man Controls a Protein Phosphatase 1-Dependent Threshold for DNA Damage Checkpoint Activation

Aimin Peng; Andrea L. Lewellyn; William P. Schiemann; James L. Maller

BACKGROUND In response to DNA damage, cells activate checkpoints to halt cell-cycle progression and prevent genomic instability. Checkpoint activation induced by DNA double-strand breaks (DSB) is dependent on the ATM kinase, a master regulator of the DNA damage response (DDR) that is activated through autophosphorylation and monomerization. RESULTS Here we show that either protein phosphatase 1 or 2A is sufficient to suppress activation of the DDR and that simultaneous inhibition of both phosphatases fully activates the response. PP1-dependent DDR regulation is mediated by its chromatin-targeting subunit, Repo-Man. Studies in Xenopus egg extracts demonstrate that Repo-Man interacts with ATM and PP1 through distinct domains, leading to PP1-dependent regulation of ATM phosphorylation and activation. Consequently, the level of Repo-Man determines the activation threshold of the DNA damage checkpoint. Repo-Man interacts and extensively colocalizes with ATM in human cells. Expression of wild-type, but not PP1 binding-deficient, Repo-Man attenuates DNA damage-induced ATM activation. Moreover, Repo-Man dissociates from active ATM at DNA damage sites, suggesting that activation of the DDR involves removal of inhibitory regulators. Analysis of primary tumor tissues and cell lines demonstrates that Repo-Man is frequently upregulated in many types of cancers. Elevated Repo-Man expression blunts DDR activation in precancerous cells, whereas knockdown of Repo-Man in malignant cancer cells resensitizes the DDR and restrains growth in soft agar. CONCLUSIONS We report essential DDR regulation mediated by Repo-Man-PP1 and further delineate underlying mechanisms. Moreover, our evidence suggests that elevated Repo-Man contributes to cancer progression.


Journal of Biological Chemistry | 2006

The anaphase-promoting complex/cyclosome inhibitor emi2 is essential for meiotic but not mitotic cell cycles

Junjun Liu; Bryn Grimison; Andrea L. Lewellyn; James L. Maller

Vertebrate oocytes awaiting fertilization are arrested at metaphase of meiosis II by cytostatic factor (CSF). This arrest is due to inhibition of the anaphase-promoting complex/cyclosome, in part by a newly identified protein, Emi2 (xErp1). Emi2 is required for maintenance of CSF arrest in egg extracts, but its function in CSF establishment in oocytes and the normal embryonic cell cycle is unknown. Here we show that during oocyte maturation, Emi2 appears only after metaphase I, and its level peaks at CSF arrest (metaphase II). In M phase, Emi2 undergoes a phosphorylation-dependent electrophoretic shift. Microinjection of antisense oligonucleotides against Emi2 into stage VI oocytes blocks progression through meiosis II and the establishment of CSF arrest. Recombinant Emi2 rescues CSF arrest in these oocytes and also causes CSF arrest in egg extracts and in blastomeres of two-cell embryos. Fertilization triggers rapid, complete degradation of Emi2, but it is resynthesized in the first embryonic cell cycle to reach levels 5-fold lower than during CSF arrest. However, depletion of the protein from cycling egg extracts does not prevent mitotic cell cycle progression. Thus, Emi2 plays an essential role in meiotic but not mitotic cell cycles.


Cell Cycle | 2009

Phosphorylation of TPX2 by Plx1 enhances activation of Aurora A.

Frank Eckerdt; Gaetan Pascreau; Meridee Phistry; Andrea L. Lewellyn; Anna A. DePaoli-Roach; James L. Maller

Entry into mitosis requires the activation of mitotic kinases, including Aurora A and Polo-like kinase 1 (Plk1). Increased levels of these kinases are frequently found associated with human cancers, and therefore it is imperative to understand the processes leading to their activation. We demonstrate that TPX2, but neither Ajuba nor Inhibitor-2, can activate Aurora A directly. Moreover, Plx1 can induce Aurora A T-loop phosphorylation indirectly in vivo during oocyte maturation. We identify Ser204 in TPX2 as a Plx1 phosphorylation site. Mutating Ser204 to alanine decreases activation of Aurora A, whereas a phosphomimetic Asp mutant exhibits enhanced activating ability. Finally, we show that phosphorylation of TPX2 with Plx1 increases its ability to activate Aurora A. Taken together, our data indicate that Plx1 promotes activation of Aurora A, most likely through TPX2. In light of the current literature, we propose a model in which Plx1 and Aurora A activate each other in a positive feedback loop.


Current Biology | 2006

Metaphase arrest by cyclin E-Cdk2 requires the spindle-checkpoint kinase Mps1

Bryn Grimison; Junjun Liu; Andrea L. Lewellyn; James L. Maller

Cytostatic factor (CSF) arrests vertebrate eggs in metaphase of meiosis II through several pathways that inhibit activation of the anaphase-promoting complex/cyclosome (APC/C). In Xenopus, the Mos-MEK1-MAPK-p90(Rsk) cascade utilizes spindle-assembly-checkpoint components to effect metaphase arrest. Another pathway involves cyclin E-Cdk2, and sustained cyclin E-Cdk2 activity in egg extracts causes metaphase arrest in the absence of Mos; this latter finding suggests that an independent pathway contributes to CSF arrest. Here, we demonstrate that metaphase arrest with cyclin E-Cdk2, but not with Mos, requires the spindle-checkpoint kinase monopolar spindles 1 (Mps1), a cyclin E-Cdk2 target that is also implicated in centrosome duplication. xMps1 is synthesized and activated during oocyte maturation and inactivated upon CSF release. In egg extracts, CSF release by calcium was inhibited by constitutively active cyclin E-Cdk2 and delayed by wild-type xMps1. Ablation of cyclin E by antisense oligonucleotides blocked accumulation of xMps1, suggesting that cyclin E-Cdk2 controls Mps1 levels. During meiosis II, activated cyclin E-Cdk2 significantly inhibited the APC/C even in the absence of the Mos-MAPK pathway, but this inhibition was not sufficient to suppress S phase between meiosis I and II. These results uniquely place xMps1 downstream of cyclin E-Cdk2 in mediating a pathway of APC/C inhibition and metaphase arrest.


Molecular Biology of the Cell | 2011

Regulation of Greatwall Kinase during Xenopus Oocyte Maturation

Tomomi M. Yamamoto; Kristina Blake-Hodek; Byron C. Williams; Andrea L. Lewellyn; Michael L. Goldberg; James L. Maller

Greatwall kinase is required for M phase maintenance by inhibiting PP2A. Gwl associates with PP2A in G2 oocytes, but the complex dissociates during M phase (meiosis I). Mutating Lys71 to Met (K71M) generates gain-of-function Gwl kinase activity toward endosulfinethat is sufficient to induce oocyte maturation in the absence of progesterone.

Collaboration


Dive into the Andrea L. Lewellyn's collaboration.

Top Co-Authors

Avatar

James L. Maller

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Junjun Liu

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stefan D. Gross

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar

Aimin Peng

University of Nebraska Medical Center

View shared research outputs
Top Co-Authors

Avatar

Frédéric E. Taieb

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar

Markus S. Schwab

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar

Tomomi M. Yamamoto

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge