Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andrea Macchi is active.

Publication


Featured researches published by Andrea Macchi.


Reviews of Modern Physics | 2013

Ion acceleration by superintense laser-plasma interaction

Andrea Macchi; M. Borghesi; M. Passoni

Ion acceleration driven by superintense laser pulses is attracting an impressive and steadily increasing effort. Motivations can be found in the potential for a number of foreseen applications and in the perspective to investigate novel regimes as far as available laser intensities will be increasing. Experiments have demonstrated in a wide range of laser and target parameters the generation of multi-MeV proton and ion beams with unique properties such as ultrashort duration, high brilliance and low emittance. In this paper we give an overview of the state-of-the art of ion acceleration by laser pulses as well as an outlook on its future development and perspectives. We describe the main features observed in the experiments, the observed scaling with laser and plasma parameters and the main models used both to interpret experimental data and to suggest new research directions.


Physical Review Letters | 2005

Laser Acceleration of Ion Bunches at the Front Surface of Overdense Plasmas

Andrea Macchi; Federica Cattani; Tatiana V. Liseykina; Fulvio Cornolti

The acceleration of ions in the interaction of high intensity laser pulses with overdense plasmas is investigated with particle-in-cell simulations. For circular polarization of the laser pulses, high-density ion bunches moving into the plasma are generated at the laser-plasma interaction surface. A simple analytical model accounts for the numerical observations and provides scaling laws for the ion bunch energy and generation time as a function of pulse intensity and plasma density.


Physical Review Letters | 2012

Ion acceleration in multispecies targets driven by intense laser radiation pressure

S. Kar; K. F. Kakolee; B. Qiao; Andrea Macchi; M. Cerchez; D. Doria; Michael Geissler; P. McKenna; D. Neely; J. Osterholz; R. Prasad; K. Quinn; B. Ramakrishna; Gianluca Sarri; O. Willi; X. Y. Yuan; M. Zepf; M. Borghesi

The acceleration of ions from ultrathin foils has been investigated by using 250 TW, subpicosecond laser pulses, focused to intensities of up to 3 × 10(20) W cm(-2). The ion spectra show the appearance of narrow-band features for protons and carbon ions peaked at higher energies (in the 5-10 MeV/nucleon range) and with significantly higher flux than previously reported. The spectral features and their scaling with laser and target parameters provide evidence of a multispecies scenario of radiation pressure acceleration in the light sail mode, as confirmed by analytical estimates and 2D particle-in-cell simulations. The scaling indicates that monoenergetic peaks with more than 100 MeV/nucleon are obtainable with moderate improvements of the target and laser characteristics, which are within reach of ongoing technical developments.


New Journal of Physics | 2010

Radiation reaction effects on radiation pressure acceleration

M. Tamburini; Francesco Pegoraro; A. Di Piazza; Christoph H. Keitel; Andrea Macchi

Radiation reaction (RR) effects on the acceleration of a thin plasma foil by a superintense laser pulse in the radiation pressure-dominated regime are investigated theoretically. A simple suitable approximation of the Landau–Lifshitz equation for the RR force and a novel leap-frog pusher for its inclusion in particle-in-cell simulations are provided. Simulations for both linear and circular polarization of the laser pulse are performed and compared. It is found that at intensities exceeding 1023 W cm− 2 the RR force strongly affects the dynamics for a linearly polarized laser pulse, reducing the maximum ion energy but also the width of the spectrum. In contrast, no significant effect is found for circularly polarized laser pulses whenever the laser pulse does not break through the foil.


Applied Physics Letters | 2007

Features of ion acceleration by circularly polarized laser pulses

Tv Liseikina; Andrea Macchi

The characteristics of a MeV ion source driven by superintense, ultrashort laser pulses with circular polarization are studied by means of particle-in-cell simulations. Predicted features include high efficiency, large ion density, low divergence, and the possibility of femtosecond duration. A comparison with the case of linearly polarized pulses is made.


Physical Review Letters | 2001

Surface oscillations in overdense plasmas irradiated by ultrashort laser pulses

Andrea Macchi; Fulvio Cornolti; Francesco Pegoraro; Tv Liseikina; H. Ruhl; Va Vshivkov

The generation of electron surface oscillations in overdense plasmas irradiated at normal incidence by an intense laser pulse is investigated. Two-dimensional (2D) particle-in-cell simulations show a transition from a planar, electrostatic oscillation at 2 omega, with omega the laser frequency, to a 2D electromagnetic oscillation at frequency omega and wave vector k > omega/c. A new electron parametric instability, involving the decay of a 1D electrostatic oscillation into two surface waves, is introduced to explain the basic features of the 2D oscillations. This effect leads to the rippling of the plasma surface within a few laser cycles, and is likely to have a strong impact on laser interaction with solid targets.


Physical Review Letters | 2013

Evidence of resonant surface-wave excitation in the relativistic regime through measurements of proton acceleration from grating targets.

T. Ceccotti; V. Floquet; Andrea Sgattoni; Alessandra Bigongiari; O. Klimo; M. Raynaud; C. Riconda; A. Héron; F. Baffigi; L. Labate; L. A. Gizzi; L. Vassura; J. Fuchs; M. Passoni; M. Květon; F. Novotny; M. Possolt; J. Prokůpek; J. Proska; J. Psikal; L. Stolcova; A. Velyhan; M. Bougeard; P. D’Oliveira; O. Tcherbakoff; F. Réau; Philippe Martin; Andrea Macchi

The interaction of laser pulses with thin grating targets, having a periodic groove at the irradiated surface, is experimentally investigated. Ultrahigh contrast (~10(12)) pulses allow us to demonstrate an enhanced laser-target coupling for the first time in the relativistic regime of ultrahigh intensity >10(19) W/cm(2). A maximum increase by a factor of 2.5 of the cutoff energy of protons produced by target normal sheath acceleration is observed with respect to plane targets, around the incidence angle expected for the resonant excitation of surface waves. A significant enhancement is also observed for small angles of incidence, out of resonance.


Laser and Particle Beams | 2007

Impulsive electric fields driven by high-intensity laser matter interactions

M. Borghesi; S. Kar; L. Romagnani; T. Toncian; P. Antici; P. Audebert; E. Brambrink; F. Ceccherini; C. A. Cecchetti; J. Fuchs; M. Galimberti; L. A. Gizzi; T. Grismayer; T. Lyseikina; R. Jung; Andrea Macchi; P. Mora; J. Osterholtz; A. Schiavi; O. Willi

Theinteractionofhigh-intensitylaserpulseswithmatterreleasesinstantaneouslyultra-largecurrentsofhighlyenergetic electrons, leading to the generation of highly-transient, large-amplitude electric and magnetic fields. We report results of recent experiments in which such charge dynamics have been studied by using proton probing techniques able to provide maps of the electrostatic fields with high spatial and temporal resolution. The dynamics of ponderomotive channeling in underdense plasmas have been studied in this way, as also the processes of Debye sheath formation andMeVionfrontexpansionattherearoflaser-irradiatedthinmetallicfoils.Laser-drivenimpulsivefieldsatthesurface of solid targets can be applied for energy-selective ion beam focusing.


Computer Physics Communications | 2005

Fluid and kinetic simulation of inertial confinement fusion plasmas

S. Atzeni; A. Schiavi; Francesco Califano; F. Cattani; Fulvio Cornolti; D. Del Sarto; T. V. Liseykina; Andrea Macchi; Francesco Pegoraro

The main features of codes for inertial confinement fusion studies are outlined, and a few recent simulation results are presented. The two-dimensional Lagrangian fluid code DUED is used to study target evolution, including beam-driven compression, hydrodynamic stability, hot spot formation, ignition and burn. An electro-magnetic particle-in-cell (PIC) code is applied to the study of ultraintense laser–plasma interaction and generation of fast electron jets. A relativistic 3D collisionless fluid model addresses relativistic electron beam propagation in a dense plasma.


Physical Review Letters | 2012

Dynamics of Self-Generated, Large Amplitude Magnetic Fields Following High-Intensity Laser Matter Interaction

Gianluca Sarri; Andrea Macchi; C. A. Cecchetti; S. Kar; T. V. Liseykina; X. H. Yang; Mark E Dieckmann; J. Fuchs; M. Galimberti; L. A. Gizzi; R. Jung; Ioannis Kourakis; J. Osterholz; Francesco Pegoraro; A. P. L. Robinson; L. Romagnani; O. Willi; M. Borghesi

The dynamics of magnetic fields with an amplitude of several tens of megagauss, generated at both sides of a solid target irradiated with a high-intensity (~10(19) W/cm(2)) picosecond laser pulse, has been spatially and temporally resolved using a proton imaging technique. The amplitude of the magnetic fields is sufficiently large to have a constraining effect on the radial expansion of the plasma sheath at the target surfaces. These results, supported by numerical simulations and simple analytical modeling, may have implications for ion acceleration driven by the plasma sheath at the rear side of the target as well as for the laboratory study of self-collimated high-energy plasma jets.

Collaboration


Dive into the Andrea Macchi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

M. Borghesi

Queen's University Belfast

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

O. Willi

University of Düsseldorf

View shared research outputs
Top Co-Authors

Avatar

S. Kar

Queen's University Belfast

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

J. Fuchs

École Polytechnique

View shared research outputs
Top Co-Authors

Avatar

L. A. Gizzi

Istituto Nazionale di Fisica Nucleare

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge