Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andrea Maio is active.

Publication


Featured researches published by Andrea Maio.


Cellulose | 2017

Polysaccharide nanocrystals as fillers for PLA based nanocomposites

Roberto Scaffaro; Luigi Botta; Francesco Lopresti; Andrea Maio; Fiorenza Sutera

The development of green nanocomposites based on biopolymers and bio-based nanofillers has attracted over the recent years the attention of academic and industrial research. Indeed, these nanocomposites could replace some oil-derived polymers and thus helping to overcome environmental problems. In this regard, PLA as matrix and polysaccharide nanocrystals as fillers are the most promising components to obtain high-performance green bio-nanocomposites suitable for different applications, particularly for packaging and biomedical applications. Indeed, at present, due to its processability, mechanical and biological properties, as well as its commercial availability, poly(lactic acid) (PLA) possesses one of the highest potentials among biopolymers whereas polysaccharide nanocrystals can be considered the most promising bio-based reinforcements due to their availability, renewability, versatility, biodegradability and high aspect ratio. Aim of this review is to give an overview on the preparation routes and main properties of PLA/polysaccharide nanocomposites highlighting the main differences among the three main polysaccharide nanocrystals, i.e. cellulose, chitin, and starch.


Polymers | 2017

Nanocarbons in Electrospun Polymeric Nanomats for Tissue Engineering: A Review

Roberto Scaffaro; Andrea Maio; Francesco Lopresti; Luigi Botta

Electrospinning is a versatile process technology, exploited for the production of fibers with varying diameters, ranging from nano- to micro-scale, particularly useful for a wide range of applications. Among these, tissue engineering is particularly relevant to this technology since electrospun fibers offer topological structure features similar to the native extracellular matrix, thus providing an excellent environment for the growth of cells and tissues. Recently, nanocarbons have been emerging as promising fillers for biopolymeric nanofibrous scaffolds. In fact, they offer interesting physicochemical properties due to their small size, large surface area, high electrical conductivity and ability to interface/interact with the cells/tissues. Nevertheless, their biocompatibility is currently under debate and strictly correlated to their surface characteristics, in terms of chemical composition, hydrophilicity and roughness. Among the several nanofibrous scaffolds prepared by electrospinning, biopolymer/nanocarbons systems exhibit huge potential applications, since they combine the features of the matrix with those determined by the nanocarbons, such as conductivity and improved bioactivity. Furthermore, combining nanocarbons and electrospinning allows designing structures with engineered patterns at both nano- and microscale level. This article presents a comprehensive review of various types of electrospun polymer-nanocarbon currently used for tissue engineering applications. Furthermore, the differences among graphene, carbon nanotubes, nanodiamonds and fullerenes and their effect on the ultimate properties of the polymer-based nanofibrous scaffolds is elucidated and critically reviewed.


Materials | 2016

Effect of graphene nanoplatelets on the physical and antimicrobial properties of biopolymer-based nanocomposites

Roberto Scaffaro; Luigi Botta; Andrea Maio; Maria Chiara Mistretta; Francesco Paolo La Mantia

In this work, biopolymer-based nanocomposites with antimicrobial properties were prepared via melt-compounding. In particular, graphene nanoplatelets (GnPs) as fillers and an antibiotic, i.e., ciprofloxacin (CFX), as biocide were incorporated in a commercial biodegradable polymer blend of poly(lactic acid) (PLA) and a copolyester (BioFlex®). The prepared materials were characterized by scanning electron microscopy (SEM), and rheological and mechanical measurements. Moreover, the effect of GnPs on the antimicrobial properties and release kinetics of CFX was evaluated. The results indicated that the incorporation of GnPs increased the stiffness of the biopolymeric matrix and allowed for the tuning of the release of CFX without hindering the antimicrobial activity of the obtained materials.


RSC Advances | 2016

Synthesis of a fluorinated graphene oxide–silica nanohybrid: improving oxygen affinity

Andrea Maio; Daniele Giallombardo; Roberto Scaffaro; A. Palumbo Piccionello; Ivana Pibiri

An easy method to achieve a fluorinated graphene oxide–silica nanohybrid (GOSF) is presented. Graphene oxide (GO) was synthesized by Hummers modified method, the GO–silica nanohybrid (GOS) was obtained via Fischer esterification, the fluorinated moiety (3-pentadecafluoroheptyl-5-perfluorophenyl-1,2,4-oxadiazole) was introduced by nucleophilic substitution operated by the hydroxyl functionalities onto the GOS surface. Full characterization of the new materials confirmed the formation of covalent bonds between the graphene oxide/silica hybrid matrix and the fluorinated moieties. The proposed methodology offers an easy way to get fluorinated carbon/silica hybrid nanomaterials avoiding the harsh reaction conditions usually involved in the preparation of fluorinated materials, and allowing the selective immobilization of specific fluorotails. Moreover, performed oxygen uptake and release kinetics showed that the introduction of fluorinated moieties increases the oxygen exchange, making the material interesting for prospective applications in the biomedical field, as oxygen delivery system, as filler for biocompatible materials, and in the preparation of membranes for the purification of water.


Journal of Visualized Experiments | 2016

A Facile and Eco-friendly Route to Fabricate Poly(Lactic Acid) Scaffolds with Graded Pore Size

Roberto Scaffaro; Francesco Lopresti; Luigi Botta; Andrea Maio; Fiorenza Sutera; Maria Chiara Mistretta; Francesco Paolo La Mantia

Over the recent years, functionally graded scaffolds (FGS) gaineda crucial role for manufacturing of devices for tissue engineering. The importance of this new field of biomaterials research is due to the necessity to develop implants capable of mimicking the complex functionality of the various tissues, including a continuous change from one structure or composition to another. In this latter context, one topic of main interest concerns the design of appropriate scaffolds for bone-cartilage interface tissue. In this study, three-layered scaffolds with graded pore size were achieved by melt mixing poly(lactic acid) (PLA), sodium chloride (NaCl) and polyethylene glycol (PEG). Pore size distributions were controlled by NaCl granulometry and PEG solvation. Scaffolds were characterized from a morphological and mechanical point of view. A correlation between the preparation method, the pore architecture and compressive mechanical behavior was found. The interface adhesion strength was quantitatively evaluated by using a custom-designed interfacial strength test. Furthermore, in order to imitate the human physiology, mechanical tests were also performed in phosphate buffered saline (PBS) solution at 37 °C. The method herein presented provides a high control of porosity, pore size distribution and mechanical performance, thus offering the possibility to fabricate three-layered scaffolds with tailored properties by following a simple and eco-friendly route.


Journal of Applied Biomaterials & Functional Materials | 2017

Development of polymeric functionally graded scaffolds: A brief review

Roberto Scaffaro; Francesco Lopresti; Andrea Maio; Fiorenza Sutera; Luigi Botta

Over recent years, there has been a growing interest in multilayer scaffolds fabrication approaches. In fact, functionally graded scaffolds (FGSs) provide biological and mechanical functions potentially similar to those of native tissues. Based on the final application of the scaffold, there are different properties (physical, mechanical, biochemical, etc.) which need to gradually change in space. Therefore, a number of different technologies have been investigated, and often combined, to customize each region of the scaffolds as much as possible, aiming at achieving the best regenerative performance. In general, FGSs can be categorized as bilayered or multilayered, depending on the number of layers in the whole structure. In other cases, scaffolds are characterized by a continuous gradient of 1 or more specific properties that cannot be related to the presence of clearly distinguished layers. Since each traditional approach presents peculiar advantages and disadvantages, FGSs are good candidates to overcome the limitations of current treatment options. In contrast to the reviews reported in the literature, which usually focus on the application of FGS, this brief review provides an overview of the most common strategies adopted to prepare FGS.


Journal of Applied Biomaterials & Functional Materials | 2016

Incorporation of an antibiotic in poly(lactic acid) and polypropylene by melt processing

Roberto Scaffaro; Luigi Botta; Andrea Maio; Giuseppe Gallo

Purpose In this work an antibiotic, ciprofloxacin (CFX), was incorporated into 2 different polymeric matrices, poly(lactic acid) (PLA) and polypropylene (PP), to provide them with antimicrobial properties. The influence of CFX content on release kinetics and on antimicrobial and mechanical properties was evaluated. Methods CFX was incorporated into both the polymers by melt mixing. Results The effect of CFX incorporation was found to strongly depend on which polymer matrix was used. In particular, the antimicrobial tests revealed that PLA samples containing CFX produced no inhibition zone and only a slight antibacterial activity was observed when the highest concentration of CFX was added to PLA. On the contrary, PP-based materials incorporating CFX, even those containing the smallest concentration of antibiotic, showed antimicrobial activity. These results were found to be in good agreement with the evaluation of the CFX release. Conclusions The negative findings of PLA-based systems are attributed to degradation phenomena that occur during the melt processing, involving some interaction between PLA and CFX. A proposed reaction mechanism between CFX and PLA occurring in the melt is presented.


TIMES OF POLYMERS (TOP) AND COMPOSITES 2014: Proceedings of the 7th International Conference on Times of Polymers (TOP) and Composites | 2014

Graphene oxide-silica nanohybrids as fillers for PA6 based nanocomposites

Andrea Maio; Roberto Fucarino; Reza Khatibi; L. Botta; Sergio Rosselli; Maurizio Bruno; Roberto Scaffaro

Graphene oxide (GO) was prepared by oxidation of graphite flakes by a mixture of H2SO4/H3PO4 and KMnO4 based on Marcanos method. Two different masterbatches containing GO (33.3%) and polyamide-6 (PA6) (66.7%) were prepared both via solvent casting in formic acid and by melt mixing in a mini-extruder (Haake). The two masterbatches were then used to prepare PA6-based nanocomposites with a content of 2% in GO. For comparison, a nanocomposite by direct mixing of PA6 and GO (2%) and PA6/graphite nanocomposites were prepared, too. The oxidation of graphite into GO was assessed by X-ray diffraction (XRD), Micro-Raman spectroscopy, scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) analyses. All these techniques demonstrated the effectiveness of the graphite modification, since the results put into evidence that, after the acid treatment, interlayer distance, oxygen content and defects increased. SEM micrographs carried out on the nanocomposites, showed GO layers totally surrounded by pol...


VIII INTERNATIONAL CONFERENCE ON “TIMES OF POLYMERS AND COMPOSITES”: From Aerospace to Nanotechnology | 2016

Preparation and mechanical characterization of polycaprolactone/graphene oxide biocomposite nanofibers

Francesco Lopresti; Andrea Maio; Luigi Botta; Roberto Scaffaro

Biocomposite nanofiber scaffolds of polycaprolactone (PCL) filled with graphene oxide (GO) were prepared using electrospinning technology. Morphological and mechanical properties of the scaffolds were characterized in dry and wet environment. The results showed that the successful incorporation of GO nanosheets into PCL polymer nanofibers improved their mechanical properties. Furthermore it was demonstrated the higher performance achieved when GO is filled at low concentration in the nanofibers.


Composites Part A-applied Science and Manufacturing | 2008

Effect of adding wood flour to the physical properties of a biodegradable polymer

M. Morreale; Roberto Scaffaro; Andrea Maio; F. P. La Mantia

Collaboration


Dive into the Andrea Maio's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge