Andrea Majzik
University of Szeged
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Andrea Majzik.
Colloids and Surfaces B: Biointerfaces | 2010
Andrea Majzik; Lívia Fülöp; Edit Csapó; Ferenc Bogár; Tamás A. Martinek; Botond Penke; G. Bíró; Imre Dékány
Gold nanoparticles (Au NPs) were functionalized by cysteine (Cys), beta-amyloid peptides (Cys(0)Abeta(1-28), Cys(0)Abeta(1-40), Abeta(1-42)) and a pentapeptide fragment (Leu-Pro-Phe-Phe-Asp-OH (LPFFD-OH)). Optical absorption spectra of these systems were recorded and the plasmon resonance maximum values (lambda(max)) of the UV-vis spectra together with the transmission electron microscopy (TEM) images were also analysed. Both TEM images and the appearance of a new absorption band between approximately 720 and 750 nm in the visible spectra of the Au-cysteine and Au-LPFFD-OH systems most probably indicate that upon addition of these molecules to Au NPs-containing aqueous dispersions formation of aggregates is occurred. The wavelength shift between the two observed absorption bands in cysteine- and pentapeptide-modified Au NPs systems are Deltalambda=185 and 193 nm, respectively. These results suggest that the monodisperse spherical gold nanoparticles were arranged to chained structure due to the effect of these molecules. For confirmation of the binding of citrate and cysteine onto the plasmonic metal surface (1)H NMR measurements were also performed. (1)H NMR results may suggest that the citrate layer on the metal surface is replaced by cysteine leading to a formation of organic double layer structure. In the presence of beta-amyloid peptides the aggregation was not observed, especially in the Au-Cys(0)Abeta(1-40) and Au-Abeta(1-42) systems, however compared to the cysteine or LPFFD-OH-containing gold dispersion with Cys(0)Abeta(1-28) measurable less aggregation were occurred. The spectral parameters clearly suggest that Abeta(1-42) can attach or bind to the surface of gold nanoparticles via both the apolar and the N-donors containing side-chains of amino acids and no aggregation in the colloidal gold dispersion was observed.
Gold Bulletin | 2009
Andrea Majzik; Rita Patakfalvi; Viktória Hornok; Imre Dékány
Gold nanoparticles in aqueous dispersion were prepared using the trisodium citrate reduction method to control the size of particles by changing the concentration of HAuCl4. The average particle size measured by DLS is higher than that obtained by TEM at a zeta potential of -40 mV. When trisodium citrate concentration is kept constant, the particle size increases with gold concentration. The kinetics of growth was studied and apparent kinetic rate constants were determined at various gold/citrate ratios. Gold nanoparticles were attached to silanized glass surfaces; Au rods were grown (ca. 200 nm) by adding more precursors and the rods’ growth rate was monitored by UV-Vis spectroscopy as well as by AFM. Surface functionalization of gold surface was influenced by cysteine. The surface modification by cysteine at pH=6.0 results in aggregation and the red shift of absorption maximum is nearly 200 nm. When glutathione molecules are bound onto the cysteinelinked Au rods on the glass surface, the spectral shift reaches only an amount of 5–10 nm, because the surface attachment hinders the tendency to aggregate.
Colloids and Surfaces B: Biointerfaces | 2010
Edit Pál; Viktória Hornok; Dániel Sebők; Andrea Majzik; Imre Dékány
Lysozyme/gold thin layers were prepared by layer-by-layer (LbL) self-assembly method. The build-up of the films was followed by UV-vis-absorbance spectra, quartz crystal microbalance (QCM) and surface plasmon resonance (SPR) techniques. The structural property of films was examined by X-ray diffraction (XRD) measurements, while their morphology was studied by scanning electron microscopy (SEM) and atomic force microscopy (AFM). It was found that gold nanoparticles (NPs) had cubic crystalline structure, the primary particles form aggregates in the thin layer due to the presence of lysozyme molecules. The UV-vis measurements prove change in particle size while the colour of the film changes from wine-red to blue. The layer thickness of films was determined using the above methods and the loose, porous structure of the films explains the difference in the results. The vapour adsorption property of hybrid layers was also studied by QCM using different saturated vapours and ammonia gas. The lysozyme/Au films were most sensitive for ammonia gas among the tested gases/vapours due to the strongest interaction between the functional groups of the protein.
Cereal Research Communications | 2015
Andrea Majzik; Viktória Hornok; Dániel Sebők; Tibor Bartók; L. Szente; K. Tuza; Imre Dékány
Due to the warm and favourably humid climate of Southern Hungary, the maize is one of the most important crops. The protection against crop damage caused by fusarium and Aspergillus species is essential. Detection of aflatoxin B1 (AFB1) molecules in cereal crops by selective sensors is important, while they can cause serious diseases in humans and animals if they enter the food chain. Our main objective was to develop selective AFB1 sensor with increased sensitivity applying βCD-functionalized gold nanoparticles (AuβCD NPs) in surface plasmon resonance (SPR) measuring apparatus. The nanoparticles ca. 10 nm in diameter were prepared in the presence of thiol-modified cyclodextrin. The adsorption isotherms of AFB1 on bare, thiol-modified cyclodextrin and AuβCD NPs covered Au film surface were calculated using SPR platform. The AFB1 concentration can be quantitatively determined in the 0.001–23.68 ng/mL range. The AuβCD NPs were found to be highly sensitive and exhibited a remarkably low limit of detection (LOD; 1 pg/mL) without using other analytical reagents.
Organic Geochemistry | 2004
Etelka Tombácz; Zsuzsanna Libor; Erzsébet Illés; Andrea Majzik; Erwin Klumpp
Journal of Physics: Condensed Matter | 2008
Etelka Tombácz; Doina Bica; Angéla Hajdú; Erzsébet Illés; Andrea Majzik; Ladislau Vekas
Organic Geochemistry | 2007
Andrea Majzik; Etelka Tombácz
Organic Geochemistry | 2007
Andrea Majzik; Etelka Tombácz
Croatica Chemica Acta | 2007
Etelka Tombácz; Erzsébet Illés; Andrea Majzik; Angéla Hajdú; Nóra Rideg; Márta Szekeres
Colloids and Surfaces A: Physicochemical and Engineering Aspects | 2012
Edit Csapó; A. Oszkó; Erika Varga; Ádám Juhász; Norbert Buzás; László Kőrösi; Andrea Majzik; Imre Dékány