Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andrea Marchi is active.

Publication


Featured researches published by Andrea Marchi.


PLOS ONE | 2014

Effect of age on complexity and causality of the cardiovascular control: comparison between model-based and model-free approaches.

Alberto Porta; Luca Faes; Vlasta Bari; Andrea Marchi; Tito Bassani; Giandomenico Nollo; Natália Maria Perseguini; Juliana Cristina Milan; Vinicius Minatel; Audrey Borghi-Silva; Anielle C. M. Takahashi; Aparecida Maria Catai

The proposed approach evaluates complexity of the cardiovascular control and causality among cardiovascular regulatory mechanisms from spontaneous variability of heart period (HP), systolic arterial pressure (SAP) and respiration (RESP). It relies on construction of a multivariate embedding space, optimization of the embedding dimension and a procedure allowing the selection of the components most suitable to form the multivariate embedding space. Moreover, it allows the comparison between linear model-based (MB) and nonlinear model-free (MF) techniques and between MF approaches exploiting local predictability (LP) and conditional entropy (CE). The framework was applied to study age-related modifications of complexity and causality in healthy humans in supine resting (REST) and during standing (STAND). We found that: 1) MF approaches are more efficient than the MB method when nonlinear components are present, while the reverse situation holds in presence of high dimensional embedding spaces; 2) the CE method is the least powerful in detecting age-related trends; 3) the association of HP complexity on age suggests an impairment of cardiac regulation and response to STAND; 4) the relation of SAP complexity on age indicates a gradual increase of sympathetic activity and a reduced responsiveness of vasomotor control to STAND; 5) the association from SAP to HP on age during STAND reveals a progressive inefficiency of baroreflex; 6) the reduced connection from HP to SAP with age might be linked to the progressive exploitation of Frank-Starling mechanism at REST and to the progressive increase of peripheral resistances during STAND; 7) at REST the diminished association from RESP to HP with age suggests a vagal withdrawal and a gradual uncoupling between respiratory activity and heart; 8) the weakened connection from RESP to SAP with age might be related to the progressive increase of left ventricular thickness and vascular stiffness and to the gradual decrease of respiratory sinus arrhythmia.


Journal of Applied Physiology | 2012

Short-term complexity indexes of heart period and systolic arterial pressure variabilities provide complementary information

Alberto Porta; P. Castiglioni; M. Di Rienzo; Vlasta Bari; Tito Bassani; Andrea Marchi; Anielle C. M. Takahashi; Eleonora Tobaldini; Nicola Montano; Aparecida Maria Catai; Franca Barbic; Raffaello Furlan; Andrei Cividjian; Luc Quintin

It is unclear whether the complexity of the variability of the systolic arterial pressure (SAP) provides complementary information to that of the heart period (HP). The complexity of HP and SAP variabilities was assessed from short beat-to-beat recordings (i.e., 256 cardiac beats). The evaluation was made during a pharmacological protocol that induced vagal blockade with atropine or a sympathetic blockade (beta-adrenergic blockade with propranolol or central sympathetic blockade with clonidine) alone or in combination, during a graded head-up tilt, and in patients with Parkinsons disease (PD) without orthostatic hypotension undergoing orthostatic challenge. Complexity was quantified according to the mean square prediction error (MSPE) derived from univariate autoregressive (AR) and multivariate AR (MAR) models. We found that: 1) MSPE(MAR) did not provide additional information to that of MSPE(AR); 2) SAP variability was less complex than that of HP; 3) because HP complexity was reduced by either vagal blockade or vagal withdrawal induced by head-up tilt and was unaffected by beta-adrenergic blockade, HP was under vagal control; 4) because SAP complexity was increased by central sympathetic blockade and was unmodified by either vagal blockade or vagal withdrawal induced by head-up tilt, SAP was under sympathetic control; 5) SAP complexity was increased in patients with PD; and 6) during orthostatic challenge, the complexity of both HP and SAP variabilities in patients with PD remained high, thus indicating both vagal and sympathetic impairments. Complexity indexes derived from short HP and SAP beat-to-beat series provide complementary information and are helpful in detecting early autonomic dysfunction in patients with PD well before circulatory symptoms become noticeable.


Physiological Measurement | 2013

K-nearest-neighbor conditional entropy approach for the assessment of the short-term complexity of cardiovascular control

Alberto Porta; P. Castiglioni; Vlasta Bari; Tito Bassani; Andrea Marchi; Andrei Cividjian; Luc Quintin; M Di Rienzo

Complexity analysis of short-term cardiovascular control is traditionally performed using entropy-based approaches including corrective terms or strategies to cope with the loss of reliability of conditional distributions with pattern length. This study proposes a new approach aiming at the estimation of conditional entropy (CE) from short data segments (about 250 samples) based on the k-nearest-neighbor technique. The main advantages are: (i) the control of the loss of reliability of the conditional distributions with the pattern length without introducing a priori information; (ii) the assessment of complexity indexes without fixing the pattern length to an arbitrary low value. The approach, referred to as k-nearest-neighbor conditional entropy (KNNCE), was contrasted with corrected approximate entropy (CApEn), sample entropy (SampEn) and corrected CE (CCE), being the most frequently exploited approaches for entropy-based complexity analysis of short cardiovascular series. Complexity indexes were evaluated during the selective pharmacological blockade of the vagal and/or sympathetic branches of the autonomic nervous system. We found that KNNCE was more powerful than CCE in detecting the decrease of complexity of heart period variability imposed by double autonomic blockade. In addition, KNNCE provides indexes indistinguishable from those derived from CApEn and SampEn. Since this result was obtained without using strategies to correct the CE estimate and without fixing the embedding dimension to an arbitrary low value, KNNCE is potentially more valuable than CCE, CApEn and SampEn when the number of past samples most useful to reduce the uncertainty of future behaviors is high and/or variable among conditions and/or groups.


Journal of Applied Physiology | 2013

Model-based causal closed-loop approach to the estimate of baroreflex sensitivity during propofol anesthesia in patients undergoing coronary artery bypass graft

Alberto Porta; Vlasta Bari; Tito Bassani; Andrea Marchi; Valeria Pistuddi; Marco Ranucci

Cardiac baroreflex is a fundamental component of the cardiovascular control. The continuous assessment of baroreflex sensitivity (BRS) from spontaneous heart period (HP) and systolic arterial pressure (SAP) variations during general anesthesia provides relevant information about cardiovascular regulation in physiological conditions. Unfortunately, several difficulties including unknown HP-SAP causal relations, negligible SAP changes, small BRS values, and confounding influences due to mechanical ventilation prevent BRS monitoring from HP and SAP variabilities during general anesthesia. We applied a model-based causal closed-loop approach aiming at BRS assessment during propofol anesthesia in 34 patients undergoing coronary artery bypass graft (CABG) surgery. We found the following: 1) traditional time and frequency domain approaches (i.e., baroreflex sequence, cross-correlation, spectral, and transfer function techniques) exhibited irremediable methodological limitations preventing the assessment of the BRS decrease during propofol anesthesia; 2) Granger causality approach proved that the methodological caveats were linked to the decreased presence of bidirectional closed-loop HP-SAP interactions and to the increased incidence of the HP-SAP uncoupling; 3) our model-based closed-loop approach detected the significant BRS decrease during propofol anesthesia as a likely result of accounting for the influences of mechanical ventilation and causal HP-SAP interactions; and 4) the model-based closed-loop approach found also a diminished gain of the relation from HP to SAP linked to vasodilatation and reduced ventricular contractility during propofol anesthesia. The proposed model-based causal closed-loop approach is more effective than traditional approaches in monitoring cardiovascular control during propofol anesthesia and indicates an overall depression of the HP-SAP closed-loop regulation.


PLOS ONE | 2014

Multiscale Complexity Analysis of the Cardiac Control Identifies Asymptomatic and Symptomatic Patients in Long QT Syndrome Type 1

Vlasta Bari; José F. Valencia; Montserrat Vallverdú; Giulia Girardengo; Andrea Marchi; Tito Bassani; Pere Caminal; Sergio Cerutti; Alfred L. George; Paul A. Brink; Lia Crotti; Peter J. Schwartz; Alberto Porta

The study assesses complexity of the cardiac control directed to the sinus node and to ventricles in long QT syndrome type 1 (LQT1) patients with KCNQ1-A341V mutation. Complexity was assessed via refined multiscale entropy (RMSE) computed over the beat-to-beat variability series of heart period (HP) and QT interval. HP and QT interval were approximated respectively as the temporal distance between two consecutive R-wave peaks and between the R-wave apex and T-wave end. Both measures were automatically taken from 24-hour electrocardiographic Holter traces recorded during daily activities in non mutation carriers (NMCs, n = 14) and mutation carriers (MCs, n = 34) belonging to a South African LQT1 founder population. The MC group was divided into asymptomatic (ASYMP, n = 11) and symptomatic (SYMP, n = 23) patients according to the symptom severity. Analyses were carried out during daytime (DAY, from 2PM to 6PM) and nighttime (NIGHT, from 12PM to 4AM) off and on beta-adrenergic blockade (BBoff and BBon). We found that the complexity of the HP variability at short time scale was under vagal control, being significantly increased during NIGHT and BBon both in ASYMP and SYMP groups, while the complexity of both HP and QT variability at long time scales was under sympathetic control, being smaller during NIGHT and BBon in SYMP subjects. Complexity indexes at long time scales in ASYMP individuals were smaller than those in SYMP ones regardless of therapy (i.e. BBoff or BBon), thus suggesting that a reduced complexity of the sympathetic regulation is protective in ASYMP individuals. RMSE analysis of HP and QT interval variability derived from routine 24-hour electrocardiographic Holter recordings might provide additional insights into the physiology of the cardiac control and might be fruitfully exploited to improve risk stratification in LQT1 population.


PLOS ONE | 2015

Conditional Self-Entropy and Conditional Joint Transfer Entropy in Heart Period Variability during Graded Postural Challenge

Alberto Porta; Luca Faes; Giandomenico Nollo; Vlasta Bari; Andrea Marchi; Beatrice De Maria; Anielle C. M. Takahashi; Aparecida Maria Catai

Self-entropy (SE) and transfer entropy (TE) are widely utilized in biomedical signal processing to assess the information stored into a system and transferred from a source to a destination respectively. The study proposes a more specific definition of the SE, namely the conditional SE (CSE), and a more flexible definition of the TE based on joint TE (JTE), namely the conditional JTE (CJTE), for the analysis of information dynamics in multivariate time series. In a protocol evoking a gradual sympathetic activation and vagal withdrawal proportional to the magnitude of the orthostatic stimulus, such as the graded head-up tilt, we extracted the beat-to-beat spontaneous variability of heart period (HP), systolic arterial pressure (SAP) and respiratory activity (R) in 19 healthy subjects and we computed SE of HP, CSE of HP given SAP and R, JTE from SAP and R to HP, CJTE from SAP and R to HP given SAP and CJTE from SAP and R to HP given R. CSE of HP given SAP and R was significantly smaller than SE of HP and increased progressively with the amplitude of the stimulus, thus suggesting that dynamics internal to HP and unrelated to SAP and R, possibly linked to sympathetic activation evoked by head-up tilt, might play a role during the orthostatic challenge. While JTE from SAP and R to HP was independent of tilt table angle, CJTE from SAP and R to HP given R and from SAP and R to HP given SAP showed opposite trends with tilt table inclination, thus suggesting that the importance of the cardiac baroreflex increases and the relevance of the cardiopulmonary pathway decreases during head-up tilt. The study demonstrates the high specificity of CSE and the high flexibility of CJTE over real data and proves that they are particularly helpful in disentangling physiological mechanisms and in assessing their different contributions to the overall cardiovascular regulation.


Frontiers in Physiology | 2016

Simultaneous Characterization of Sympathetic and Cardiac Arms of the Baroreflex through Sequence Techniques during Incremental Head-Up Tilt

Andrea Marchi; Vlasta Bari; Beatrice De Maria; Murray Esler; Elisabeth Lambert; Mathias Baumert; Alberto Porta

We propose a sympathetic baroreflex (sBR) sequence method for characterizing sBR from spontaneous beat-to-beat fluctuations of muscle sympathetic nerve activity (MSNA) and diastolic arterial pressure (DAP). The method exploits a previously defined MSNA variability quantifying the fluctuations of MSNA burst rate. The method is based on the detection of MSNA and DAP sequences characterized by the contemporaneous DAP increase and MSNA decrease or vice versa. The percentage of sBR sequences (SEQ%sBR) was taken as an indication of the degree of sBR solicitation and the average slope of the regression lines in the (DAP, MSNA) plane was taken as sBR sensitivity (sBRSSEQ) and expressed in bursts.s−1.mmHg−1. sBRSSEQ was compared to a more traditional estimate based on the baroreflex threshold analysis (sBRSBTA). An incremental head-up tilt protocol, carried out in 12 young healthy subjects (age: 20–36 yr, median = 22.5 yr, 9 females) sequentially tilted at 0, 20, 30, 40, 60° table inclinations, was utilized to set the sBR sequence method parameters. Traditional sequence analysis was exploited to estimate cardiac baroreflex (cBR) sensitivity (cBRSSEQ) and percentage of cBR sequences (SEQ%cBR). The head-up tilt induced the progressive increase of SEQ%sBR and SEQ%cBR and gradual decrease of both sBRSSEQ and cBRSSEQ, thus suggesting the gradual rise of the sBR and cBR solicitations and the progressive reduction of their effectiveness with the stimulus. sBRSSEQ was significantly associated with sBRSBTA. sBRSSEQ and cBRSSEQ were significantly correlated as well as SEQ%sBR and SEQ%cBR, even though the correlation was not strong, thus suggesting a certain degree of independence between the baroreflex arms. The proposed sBR sequence approach provides a dynamical characterization of the sBR alternative to more traditional static pharmacological and nonpharmacological methods and fully homogenous with the cBR sequence technique.


Entropy | 2014

Effect of the Postural Challenge on the Dependence of the Cardiovascular Control Complexity on Age

Aparecida Maria Catai; Anielle C. M. Takahashi; Natália Maria Perseguini; Juliana Cristina Milan; Vinicius Minatel; Patrícia Rehder-Santos; Andrea Marchi; Vlasta Bari; Alberto Porta

Short-term complexity of heart period (HP) and systolic arterial pressure (SAP) was computed to detect age and gender influences over cardiovascular control in resting supine condition (REST) and during standing (STAND). Healthy subjects (n = 110, men = 55) were equally divided into five groups (21–30; 31–40; 41–50; 51–60; and 61–70 years of age). HP and SAP series were recorded for 15 min at REST and during STAND. A normalized complexity index (NCI) based on conditional entropy was assessed. At REST we found that both NCIHP and NCISAP decreased with age in the overall population, but only women were responsible for this trend. During STAND we observed that both NCIHP and NCISAP were unrelated to age in the overall population, even when divided by gender. When the variation of NCI in response to STAND (ΔNCI = NCI at REST-NCI during STAND) was computed individually, we found that ΔNCIHP progressively decreased with age in the overall population, and women were again responsible for this trend. Conversely, ΔNCISAP was unrelated to age and gender. This study stresses that the complexity of cardiovascular control and its ability to respond to stressors are more importantly lost with age in women than in men.


Autonomic Neuroscience: Basic and Clinical | 2013

Coherence analysis overestimates the role of baroreflex in governing the interactions between heart period and systolic arterial pressure variabilities during general anesthesia

Tito Bassani; Vlasta Bari; Andrea Marchi; Maddalena Alessandra Wu; Giuseppe Baselli; Giuseppe Citerio; Alessandro Beda; Marcelo Gama de Abreu; Andreas Güldner; Stefano Guzzetti; Alberto Porta

During general anesthesia positive pressure mechanical ventilation (MV) profoundly affects intrathoracic pressure and venous return, thus soliciting cardiopulmonary reflexes and modifying stroke volume. As a consequence heart period, approximated as the temporal distance between two consecutive R peaks on the ECG (RR), and systolic arterial pressure (SAP) variability series are usually highly correlated at the MV frequency (MVF) and this significant correlation is commonly taken as an indication of an active baroreflex. In this study the involvement of baroreflex was tested according to a time-domain linear Granger causality approach accounting explicitly for MV in two experimental protocols. In the first protocol volatile (VA) or intravenous (IA) anesthetic was administered in humans during pressure controlled MV (PCMV). In the second protocol IA was administered in pigs during PCMV or pressure support MV (PSMV). Causality analysis was contrasted with RR-SAP squared coherence. Significant coherence values at MVF were always found in both protocols. On the contrary, a significant causal link from SAP to RR was less frequently found in humans independently of the anesthesiological strategy and in animals during PCMV. PSMV was superior to PCMV in animals because it was able to better preserve a link from SAP to RR. During general anesthesia the involvement of baroreflex in governing RR-SAP variability interactions is largely overestimated by RR-SAP squared coherence and causality analysis can be exploited to rank anesthesiological strategies and MV modes according to the ability of preserving a working baroreflex.


IEEE Transactions on Biomedical Engineering | 2017

Are Nonlinear Model-Free Conditional Entropy Approaches for the Assessment of Cardiac Control Complexity Superior to the Linear Model-Based One?

Alberto Porta; Beatrice De Maria; Vlasta Bari; Andrea Marchi; Luca Faes

Objective: We test the hypothesis that the linear model-based (MB) approach for the estimation of conditional entropy (CE) can be utilized to assess the complexity of the cardiac control in healthy individuals. Methods: An MB estimate of CE was tested in an experimental protocol (i.e., the graded head-up tilt) known to produce a gradual decrease of cardiac control complexity as a result of the progressive vagal withdrawal and concomitant sympathetic activation. The MB approach was compared with traditionally exploited nonlinear model-free (MF) techniques such as corrected approximate entropy, sample entropy, corrected CE, two k -nearest-neighbor CE procedures and permutation CE. Electrocardiogram was recorded in 17 healthy subjects at rest in supine position and during head-up tilt with table angles of 15°, 30°, 45°, 60°, and 75°. Heart period (HP) was derived as the temporal distance between two consecutive R-wave peaks and analysis was carried out over stationary sequences of 256 successive HPs. Results: The performance of the MB method in following the progressive decrease of HP complexity with tilt table angles was in line with those of MF approaches and the MB index was remarkably correlated with the MF ones. Conclusion: The MB approach can be utilized to monitor the changes of the complexity of the cardiac control, thus speeding up dramatically the CE calculation. Significance: The remarkable performance of the MB approach challenges the notion, generally assumed in cardiac control complexity analysis based on CE, about the need of MF techniques and could allow real-time applications.

Collaboration


Dive into the Andrea Marchi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Aparecida Maria Catai

Federal University of São Carlos

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge