Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andrea Maul-Pavicic is active.

Publication


Featured researches published by Andrea Maul-Pavicic.


American Journal of Human Genetics | 2009

Familial hemophagocytic lymphohistiocytosis type 5 (FHL-5) is caused by mutations in Munc18-2 and impaired binding to syntaxin 11.

Udo zur Stadt; Jan Rohr; Wenke Seifert; Florian Koch; Samantha Grieve; Julia Pagel; Julia Strauß; Brigitte Kasper; Gudrun Nürnberg; Christian Becker; Andrea Maul-Pavicic; Karin Beutel; Gritta Janka; Gillian M. Griffiths; Stephan Ehl; Hans Christian Hennies

Rapid intracellular transport and secretion of cytotoxic granules through the immunological synapse requires a balanced interaction of several proteins. Disturbance of this highly regulated process underlies familial hemophagocytic lymphohistiocytosis (FHL), a genetically heterogeneous autosomal-recessive disorder characterized by a severe hyperinflammatory phenotype. Here, we have assigned FHL-5 to a 1 Mb region on chromosome 19p by using high-resolution SNP genotyping in eight unrelated FHL patients from consanguineous families. Subsequently, we found nine different mutations, either truncating or missense, in STXBP2 in twelve patients from Turkey, Saudi Arabia, and Central Europe. STXBP2 encodes syntaxin binding protein 2 (Munc18-2), involved in the regulation of vesicle transport to the plasma membrane. We have identified syntaxin 11, a SNARE protein mutated in FHL-4, as an interaction partner of STXBP2. This interaction is eliminated by the missense mutations found in our FHL-5 patients, which leads to a decreased stability of both proteins, as shown in patient lymphocytes. Activity of natural killer and cytotoxic T cells was markedly reduced or absent, as determined by CD107 degranulation. Our findings thus identify a key role for STXBP2 in lytic granule exocytosis.


Blood | 2012

A prospective evaluation of degranulation assays in the rapid diagnosis of familial hemophagocytic syndromes.

Yenan T. Bryceson; Daniela Pende; Andrea Maul-Pavicic; Kimberly Gilmour; Heike Ufheil; Thomas Vraetz; Samuel C. C. Chiang; Stefania Marcenaro; Raffaella Meazza; Ilka Bondzio; Denise Walshe; Gritta Janka; Kai Lehmberg; Karin Beutel; Udo zur Stadt; Nadine Binder; Maurizio Aricò; Lorenzo Moretta; Jan-Inge Henter; Stephan Ehl

Familial hemophagocytic lymphohistiocytosis (FHL) is a life-threatening disorder of immune regulation caused by defects in lymphocyte cytotoxicity. Rapid differentiation of primary, genetic forms from secondary forms of hemophagocytic lymphohistiocytosis (HLH) is crucial for treatment decisions. We prospectively evaluated the performance of degranulation assays based on surface up-regulation of CD107a on natural killer (NK) cells and cytotoxic T lymphocytes in a cohort of 494 patients referred for evaluation for suspected HLH. Seventy-five of 77 patients (97%) with FHL3-5 and 11 of 13 patients (85%) with Griscelli syndrome type 2 or Chediak-Higashi syndrome had abnormal resting NK-cell degranulation. In contrast, NK-cell degranulation was normal in 14 of 16 patients (88%) with X-linked lymphoproliferative disease and in 8 of 14 patients (57%) with FHL2, who were identified by diminished intracellular SLAM-associated protein (SAP), X-linked inhibitor of apoptosis protein (XIAP), and perforin expression, respectively. Among 66 patients with a clinical diagnosis of secondary HLH, 13 of 59 (22%) had abnormal resting NK-cell degranulation, whereas 0 of 43 had abnormal degranulation using IL-2-activated NK cells. Active disease or immunosuppressive therapy did not impair the assay performance. Overall, resting NK-cell degranulation below 5% provided a 96% sensitivity for a genetic degranulation disorder and a specificity of 88%. Therefore, degranulation assays allow a rapid and reliable classification of patients, benefiting treatment decisions.


Proceedings of the National Academy of Sciences of the United States of America | 2011

ORAI1-mediated calcium influx is required for human cytotoxic lymphocyte degranulation and target cell lysis

Andrea Maul-Pavicic; Samuel C. C. Chiang; Anne Rensing-Ehl; Birthe Jessen; Cyril Fauriat; Stephanie M. Wood; Sebastian Sjöqvist; Markus Hufnagel; Ilka Schulze; Thilo Bass; Wolfgang W. A. Schamel; Sebastian Fuchs; Hanspeter Pircher; Christie-Ann McCarl; Katsuhiko Mikoshiba; Klaus Schwarz; Stefan Feske; Yenan T. Bryceson; Stephan Ehl

Lymphocytes mediate cytotoxicity by polarized release of the contents of cytotoxic granules toward their target cells. Here, we have studied the role of the calcium release-activated calcium channel ORAI1 in human lymphocyte cytotoxicity. Natural killer (NK) cells obtained from an ORAI1-deficient patient displayed defective store-operated Ca2+ entry (SOCE) and severely defective cytotoxic granule exocytosis leading to impaired target cell lysis. Similar findings were obtained using NK cells from a stromal interaction molecule 1-deficient patient. The defect occurred at a late stage of the signaling process, because activation of leukocyte functional antigen (LFA)-1 and cytotoxic granule polarization were not impaired. Moreover, pharmacological inhibition of SOCE interfered with degranulation and target cell lysis by freshly isolated NK cells and CD8+ effector T cells from healthy donors. In addition to effects on lymphocyte cytotoxicity, synthesis of the chemokine macrophage inflammatory protein-1β and the cytokines TNF-α and IFN-γ on target cell recognition was impaired in ORAI1-deficient NK cells, as previously described for T cells. By contrast, NK cell cytokine production induced by combinations of IL-12, IL-15, and IL-18 was not impaired by ORAI1 deficiency. Taken together, these results identify a critical role for ORAI1-mediated Ca2+ influx in granule exocytosis for lymphocyte cytotoxicity as well as for cytokine production induced by target cell recognition.


Journal of Immunology | 2012

Antiviral and Regulatory T Cell Immunity in a Patient with Stromal Interaction Molecule 1 Deficiency

Sebastian Fuchs; Anne Rensing-Ehl; Carsten Speckmann; Bertram Bengsch; Annette Schmitt-Graeff; Ilka Bondzio; Andrea Maul-Pavicic; Thilo Bass; Thomas Vraetz; Brigitte Strahm; Tobias Ankermann; Melina Benson; Almuth Caliebe; Regina Fölster-Holst; Petra Kaiser; Robert Thimme; Wolfgang W. A. Schamel; Klaus Schwarz; Stefan Feske; Stephan Ehl

Stromal interaction molecule 1 (STIM1) deficiency is a rare genetic disorder of store-operated calcium entry, associated with a complex syndrome including immunodeficiency and immune dysregulation. The link from the molecular defect to these clinical manifestations is incompletely understood. We report two patients with a homozygous R429C point mutation in STIM1 completely abolishing store-operated calcium entry in T cells. Immunological analysis of one patient revealed that despite the expected defect of T cell proliferation and cytokine production in vitro, significant antiviral T cell populations were generated in vivo. These T cells proliferated in response to viral Ags and showed normal antiviral cytotoxicity. However, antiviral immunity was insufficient to prevent chronic CMV and EBV infections with a possible contribution of impaired NK cell function and a lack of NKT cells. Furthermore, autoimmune cytopenia, eczema, and intermittent diarrhea suggested impaired immune regulation. FOXP3-positive regulatory T (Treg) cells were present but showed an abnormal phenotype. The suppressive function of STIM1-deficient Treg cells in vitro, however, was normal. Given these partial defects in cytotoxic and Treg cell function, impairment of other immune cell populations probably contributes more to the pathogenesis of immunodeficiency and autoimmunity in STIM1 deficiency than previously appreciated.


Arthritis Research & Therapy | 2012

Recent advances in the diagnosis and treatment of hemophagocytic lymphohistiocytosis.

Sebastian Fn Bode; Kai Lehmberg; Andrea Maul-Pavicic; Thomas Vraetz; Gritta Janka; Udo zur Stadt; Stephan Ehl

Hemophagocytic lymphohistiocytosis (HLH) is a rare life-threatening disease of severe hyperinflammation caused by uncontrolled proliferation of activated lymphocytes and macrophages secreting high amounts of inflammatory cytokines. It is a frequent manifestation in patients with predisposing genetic defects, but can occur secondary to various infectious, malignant, and autoimmune triggers in patients without a known genetic predisposition. Clinical hallmarks are prolonged fever, cytopenias, hepatosplenomegaly, and neurological symptoms, but atypical variants presenting with signs of chronic immunodeficiency are increasingly recognized. Impaired secretion of perforin is a key feature in several genetic forms of the disease, but not required for disease pathogenesis. Despite progress in diagnostics and therapy, mortality of patients with severe HLH is still above 40%. Reference treatment is an etoposide-based protocol, but new approaches are currently explored. Key for a favorable prognosis is the rapid identification of an underlying genetic cause, which has been facilitated by recent immunological and genetic advances. In patients with predisposing genetic disease, hematopoietic stem cell transplantation is performed increasingly with reduced intensity conditioning regimes. Current research aims at a better understanding of disease pathogenesis and evaluation of more targeted approaches to therapy, including anti-cytokine antibodies and gene therapy.


Blood | 2012

Distinct mutations in STXBP2 are associated with variable clinical presentations in patients with familial hemophagocytic lymphohistiocytosis type 5 (FHL5)

Julia Pagel; Karin Beutel; Kai Lehmberg; Florian Koch; Andrea Maul-Pavicic; Anna-Katharina Rohlfs; Abdullah Al-Jefri; Rita Beier; Lilian Bomme Ousager; Karoline Ehlert; Ute Gross-Wieltsch; Norbert Jorch; Bernhard Kremens; Arnulf Pekrun; Monika Sparber-Sauer; Ester Mejstrikova; Angela Wawer; Stephan Ehl; Udo zur Stadt; Gritta Janka

Familial hemophagocytic lymphohistiocytosis (FHL) is a genetically determined hyperinflammatory syndrome caused by uncontrolled immune response mediated by T-lymphocytes, natural killer (NK) cells, and macrophages. STXBP2 mutations have recently been associated with FHL5. To better characterize the genetic and clinical spectrum of FHL5, we analyzed a cohort of 185 patients with suspected FHL for mutations in STXBP2. We detected biallelic mutations in 37 patients from 28 families of various ethnic origins. Missense mutations and mutations affecting 1 of the exon 15 splice sites were the predominant changes detectable in this cohort. Patients with exon 15 splice-site mutations (n = 13) developed clinical manifestations significantly later than patients with other mutations (median age, 4.1 year vs 2 months) and showed less severe impairment of degranulation and cytotoxic function of NK cells and CTLs. Patients with FHL5 showed several atypical features, including sensorineural hearing deficit, abnormal bleeding, and, most frequently, severe diarrhea that was only present in early-onset disease. In conclusion, we report the largest cohort of patients with FHL5 so far, describe an extended disease spectrum, and demonstrate for the first time a clear genotype-phenotype correlation.


The Journal of Allergy and Clinical Immunology | 2014

Hypomorphic homozygous mutations in phosphoglucomutase 3 (PGM3) impair immunity and increase serum IgE levels

Atfa Sassi; Sandra Lazaroski; Gang Wu; Stuart M. Haslam; Manfred Fliegauf; Fethi Mellouli; Turkan Patiroglu; Ekrem Unal; Mehmet Akif Ozdemir; Zineb Jouhadi; Khadija Khadir; Leila Ben-Khemis; Meriem Ben-Ali; Imen Ben-Mustapha; Lamia Borchani; Dietmar Pfeifer; Thilo Jakob; Monia Khemiri; A. Charlotta Asplund; Manuela O. Gustafsson; Karin E. Lundin; Elin Falk-Sörqvist; Lotte N. Moens; Hatice Eke Gungor; Karin R. Engelhardt; Magdalena Dziadzio; Hans J. Stauss; Bernhard Fleckenstein; Rebecca Meier; Khairunnadiya Prayitno

BACKGROUND Recurrent bacterial and fungal infections, eczema, and increased serum IgE levels characterize patients with the hyper-IgE syndrome (HIES). Known genetic causes for HIES are mutations in signal transducer and activator of transcription 3 (STAT3) and dedicator of cytokinesis 8 (DOCK8), which are involved in signal transduction pathways. However, glycosylation defects have not been described in patients with HIES. One crucial enzyme in the glycosylation pathway is phosphoglucomutase 3 (PGM3), which catalyzes a key step in the synthesis of uridine diphosphate N-acetylglucosamine, which is required for the biosynthesis of N-glycans. OBJECTIVE We sought to elucidate the genetic cause in patients with HIES who do not carry mutations in STAT3 or DOCK8. METHODS After establishing a linkage interval by means of SNPchip genotyping and homozygosity mapping in 2 families with HIES from Tunisia, mutational analysis was performed with selector-based, high-throughput sequencing. Protein expression was analyzed by means of Western blotting, and glycosylation was profiled by using mass spectrometry. RESULTS Mutational analysis of candidate genes in an 11.9-Mb linkage region on chromosome 6 shared by 2 multiplex families identified 2 homozygous mutations in PGM3 that segregated with disease status and followed recessive inheritance. The mutations predict amino acid changes in PGM3 (p.Glu340del and p.Leu83Ser). A third homozygous mutation (p.Asp502Tyr) and the p.Leu83Ser variant were identified in 2 other affected families, respectively. These hypomorphic mutations have an effect on the biosynthetic reactions involving uridine diphosphate N-acetylglucosamine. Glycomic analysis revealed an aberrant glycosylation pattern in leukocytes demonstrated by a reduced level of tri-antennary and tetra-antennary N-glycans. T-cell proliferation and differentiation were impaired in patients. Most patients had developmental delay, and many had psychomotor retardation. CONCLUSION Impairment of PGM3 function leads to a novel primary (inborn) error of development and immunity because biallelic hypomorphic mutations are associated with impaired glycosylation and a hyper-IgE-like phenotype.


Haematologica | 2010

Atypical familial hemophagocytic lymphohistiocytosis due to mutations in UNC13D and STXBP2 overlaps with primary immunodeficiency diseases

Jan Rohr; Karin Beutel; Andrea Maul-Pavicic; Thomas Vraetz; Jens Thiel; Klaus Warnatz; Ilka Bondzio; Ute Gross-Wieltsch; Michael Schündeln; Barbara Schütz; Wilhelm Woessmann; Andreas H. Groll; Brigitte Strahm; Julia Pagel; Carsten Speckmann; Gritta Janka; Gillian M. Griffiths; Klaus Schwarz; Udo zur Stadt; Stephan Ehl

Background Familial hemophagocytic lymphohistiocytosis is a genetic disorder of lymphocyte cytotoxicity that usually presents in the first two years of life and has a poor prognosis unless treated by hematopoietic stem cell transplantation. Atypical courses with later onset and prolonged survival have been described, but no detailed analysis of immunological parameters associated with typical versus atypical forms of familial hemophagocytic lymphohistiocytosis has been performed. Design and Methods We analyzed disease manifestations, NK-cell and T-cell cytotoxicity and degranulation, markers of T-cell activation and B-cell differentiation as well as Natural Killer T cells in 8 patients with atypical familial hemophagocytic lymphohistiocytosis due to mutations in UNC13D and STXBP2. Results All but one patient with atypical familial hemophagocytic lymphohistiocytosis carried at least one splice-site mutation in UNC13D or STXBP2. In most patients episodes of hemophagocytic lymphohistiocytosis were preceded or followed by clinical features typically associated with immunodeficiency, such as chronic active Epstein Barr virus infection, increased susceptibility to bacterial infections, granulomatous lung or liver disease, encephalitis or lymphoma. Five of 8 patients had hypogammaglobulinemia and reduced memory B cells. Most patients had a predominance of activated CD8+ T cells and low numbers of Natural Killer T cells. When compared to patients with typical familial hemophagocytic lymphohistiocytosis, NK-cell cytotoxicity and NK-cell and CTL degranulation were impaired to a similar extent. However, in patients with an atypical course NK-cell degranulation could be partially reconstituted by interleukin-2 and cytotoxic T-cell cytotoxicity in vitro was normal. Conclusions Clinical and immunological features of atypical familial hemophagocytic lymphohistiocytosis show an important overlap to primary immunodeficiency diseases (particularly common variable immunodeficiency and X-linked lymphoproliferative syndrome) and must, therefore, be considered in a variety of clinical presentations. We show that degranulation assays are helpful screening tests for the identification of such patients.


Developmental Dynamics | 2000

Forkhead/winged-helix transcription factor whn regulates hair keratin gene expression: Molecular analysis of the Nude skin phenotype

Thomas Schlake; Michael Schorpp; Andrea Maul-Pavicic; A.M. Malashenko; Thomas Boehm

The molecular characteristics of the nude phenotype (alopecia and thymic aplasia) in humans and rodents are unknown. The nude locus encodes Whn, a transcription factor of the forkhead/winged‐helix class. Expression of Whn in HeLa cells induced expression of human hair keratin genes Ha3‐II and Hb5. Correspondingly, in nude mice, which are homozygous for a loss‐of‐function mutation of Whn, expression of mouse mHa3 and mHb5 hair keratin genes is severely reduced. Characterization of a previously identified nude allele, nuY, revealed a mis‐sense mutation (R320C) in the DNA binding domain of Whn. This mutant protein is unable to activate hair keratin gene expression in HeLa cells. When the Whn transcription factor was expressed in two parts, one containing the N‐terminal DNA binding domain and the other the C‐terminal activation domain, no activation of hair keratin genes in HeLa cells was observed. However, when these two proteins were noncovalently linked by means of synthetic dimerizers, hair keratin gene expression was induced. This finding suggests that target gene activation by Whn depends on the structural integrity and physical proximity of DNA binding and activation domains, providing a molecular framework to explain the loss‐of‐function phenotypes of all previously characterized nude mutations. Our results implicate Whn as a transcriptional regulator of hair keratin genes and reveal the nude phenotype as the first example of an inherited skin disorder that is caused by loss of expression rather than mutation of keratin genes. Dev Den;217:368–376.


Blood | 2011

Subtle differences in CTL cytotoxicity determine susceptibility to hemophagocytic lymphohistiocytosis in mice and humans with Chediak-Higashi syndrome.

Birthe Jessen; Andrea Maul-Pavicic; Heike Ufheil; Thomas Vraetz; Anselm Enders; Kai Lehmberg; Alfred Längler; Ute Gross-Wieltsch; Ali Bay; Zühre Kaya; Yenan T. Bryceson; Ewa Koscielniak; Sherif M. Badawy; Graham Davies; Markus Hufnagel; Annette Schmitt-Graeff; Peter Aichele; Udo zur Stadt; Klaus Schwarz; Stephan Ehl

Perforin-mediated cytotoxicity is important for controlling viral infections, but also for limiting immune reactions. Failure of this cytotoxic pathway leads to hemophagocytic lymphohistiocytosis (HLH), a life-threatening disorder of uncontrolled T-cell and macrophage activation. We studied susceptibility to HLH in 2 mouse strains (souris and beige(J)) and a cohort of patients with partial defects in perforin secretion resulting from different mutations in the LYST gene. Although both strains lacked NK-cell cytotoxicity, only souris mice developed all clinical and histopathologic signs of HLH after infection with lymphocytic choriomeningitis virus. The 2 strains showed subtle differences in CTL cytotoxicity in vitro that had a large impact on virus control in vivo. Whereas beige(J) CTLs eliminated lymphocytic choriomeningitis virus infection, souris CTLs failed to control the virus, which was associated with the development of HLH. In LYST-mutant patients with Chediak-Higashi syndrome, CTL cytotoxicity was reduced in patients with early-onset HLH, whereas it was retained in patients who later or never developed HLH. Thus, the risk of HLH development is set by a threshold that is determined by subtle differences in CTL cytotoxicity. Differences in the cytotoxic capacity of CTLs may be predictive for the risk of Chediak-Higashi syndrome patients to develop HLH.

Collaboration


Dive into the Andrea Maul-Pavicic's collaboration.

Top Co-Authors

Avatar

Stephan Ehl

University of Freiburg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gritta Janka

Ludwig Maximilian University of Munich

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Birthe Jessen

University Medical Center Freiburg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Annette Schmitt-Graeff

University Medical Center Freiburg

View shared research outputs
Researchain Logo
Decentralizing Knowledge