Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andrea Napolitano is active.

Publication


Featured researches published by Andrea Napolitano.


Journal of Translational Medicine | 2012

BAP1 cancer syndrome: malignant mesothelioma, uveal and cutaneous melanoma, and MBAITs

Michele Carbone; Laura K. Ferris; Francine Baumann; Andrea Napolitano; Christopher A. Lum; Erin Flores; Giovanni Gaudino; Amy Powers; Peter Bryant-Greenwood; Thomas Krausz; Elizabeth Hyjek; Rachael Tate; Joseph S. Friedberg; Tracey L. Weigel; Harvey I. Pass; Haining Yang

BackgroundBRCA1–associated protein 1 (BAP1) is a tumor suppressor gene located on chromosome 3p21. Germline BAP1 mutations have been recently associated with an increased risk of malignant mesothelioma, atypical melanocytic tumors and other neoplasms. To answer the question if different germline BAP1 mutations may predispose to a single syndrome with a wide phenotypic range or to distinct syndromes, we investigated the presence of melanocytic tumors in two unrelated families (L and W) with germline BAP1 mutations and increased risk of malignant mesothelioma.MethodsSuspicious cutaneous lesions were clinically and pathologically characterized and compared to those present in other families carrying BAP1 mutations. We then conducted a meta-analysis of all the studies reporting BAP1-mutated families to survey cancer risk related to the germline BAP1 mutation (means were compared using t-test and proportions were compared with Pearson χ2 test or two-tailed Fisher’s exact test).ResultsMelanocytic tumors: of the five members of the L family studied, four (80%) carried a germline BAP1 mutation (p.Gln684*) and also presented one or more atypical melanocytic tumors; of the seven members of W family studied, all carried a germline BAP1 mutation (p.Pro147fs*48) and four of them (57%) presented one or more atypical melanocytic tumors, that we propose to call “melanocytic BAP1-mutated atypical intradermal tumors” (MBAITs). Meta-analysis: 118 individuals from seven unrelated families were selected and divided into a BAP1-mutated cohort and a BAP1-non-mutated cohort. Malignant mesothelioma, uveal melanoma, cutaneous melanoma, and MBAITs prevalence was significantly higher in the BAP1-mutated cohort (p ≤ 0.001).ConclusionsGermline BAP1 mutations are associated with a novel cancer syndrome characterized by malignant mesothelioma, uveal melanoma, cutaneous melanoma and MBAITs, and possibly by other cancers. MBAITs provide physicians with a marker to identify individuals who may carry germline BAP1 mutations and thus are at high risk of developing associated cancers.


Carcinogenesis | 2015

Mesothelioma patients with germline BAP1 mutations have 7-fold improved long-term survival

Francine Baumann; Erin Flores; Andrea Napolitano; Shreya Kanodia; Emanuela Taioli; Harvey I. Pass; Haining Yang; Michele Carbone

BRCA1-associated protein-1 (BAP1) mutations cause a new cancer syndrome, with a high rate of malignant mesothelioma (MM). Here, we tested the hypothesis that MM associated with germline BAP1 mutations has a better prognosis compared with sporadic MM. We compared survival among germline BAP1 mutation MM patients with that of all MM (N = 10 556) recorded in the United States Surveillance, Epidemiology, and End Results (SEER) data from 1973 to 2010. We identified 23 MM patients--11 alive--with germline BAP1 mutations and available data on survival. Ten patients had peritoneal MM, ten pleural MM and three MM in both locations. Thirteen patients had one or more malignancies in addition to MM. Actuarial median survival for the MM patients with germline BAP1 mutations was 5 years, as compared with <1 year for the median survival in the United States SEER MM group. Five-year survival was 47%, 95% confidence interval (24-67%), as compared with 6.7% (6.2-7.3%) in the control SEER group. Analysis of the pooled cohort of germline BAP1 mutation MM showed that patients with peritoneal MM (median survival of 10 years, P = 0.0571), or with a second malignancy in addition to MM (median survival of 10 years, P = 0.0716), survived for a longer time compared with patients who only had pleural MM, or MM patients without a second malignancy, respectively. In conclusion, we found that MM patients with germline BAP1 mutations have an overall 7-fold increased long-term survival, independently of sex and age. Appropriate genetic counseling and clinical management should be considered for MM patients who are also BAP1 mutation carriers.


Oncogene | 2016

Minimal asbestos exposure in germline BAP1 heterozygous mice is associated with deregulated inflammatory response and increased risk of mesothelioma

Andrea Napolitano; Laura Pellegrini; A. Dey; David E. Larson; Mika Tanji; Erin Flores; Brian Kendrick; Danica Lapid; Amy Powers; Shreya Kanodia; Sandra Pastorino; Harvey I. Pass; V. Dixit; Haining Yang; Michele Cabone

Germline BAP1 mutations predispose to several cancers, in particular malignant mesothelioma. Mesothelioma is an aggressive malignancy generally associated with professional exposure to asbestos. However, to date, we found that none of the mesothelioma patients carrying germline BAP1 mutations were professionally exposed to asbestos. We hypothesized that germline BAP1 mutations might influence the asbestos-induced inflammatory response that is linked to asbestos carcinogenesis, thereby increasing the risk of developing mesothelioma after minimal exposure. Using a BAP1+/− mouse model, we found that, compared with their wild-type littermates, BAP1+/− mice exposed to low-dose asbestos fibers showed significant alterations of the peritoneal inflammatory response, including significantly higher levels of pro-tumorigenic alternatively polarized M2 macrophages, and lower levels of several chemokines and cytokines. Consistent with these data, BAP1+/− mice had a significantly higher incidence of mesothelioma after exposure to very low doses of asbestos, doses that rarely induced mesothelioma in wild-type mice. Our findings suggest that minimal exposure to carcinogenic fibers may significantly increase the risk of malignant mesothelioma in genetically predisposed individuals carrying germline BAP1 mutations, possibly via alterations of the inflammatory response.


Nature | 2017

BAP1 regulates IP3R3-mediated Ca2+ flux to mitochondria suppressing cell transformation

Angela Bononi; Carlotta Giorgi; Simone Patergnani; David E. Larson; Kaitlyn Verbruggen; Mika Tanji; Laura Pellegrini; Valentina Signorato; Federica Olivetto; Sandra Pastorino; Masaki Nasu; Andrea Napolitano; Giovanni Gaudino; Paul F. Morris; Greg Sakamoto; Laura K. Ferris; Alberto Danese; Andrea Raimondi; Carlo Tacchetti; Shafi Kuchay; Harvey I. Pass; Haining Yang; Paolo Pinton; Michele Carbone

BRCA1-associated protein 1 (BAP1) is a potent tumour suppressor gene that modulates environmental carcinogenesis. All carriers of inherited heterozygous germline BAP1-inactivating mutations (BAP1+/−) developed one and often several BAP1−/− malignancies in their lifetime, mostly malignant mesothelioma, uveal melanoma, and so on. Moreover, BAP1-acquired biallelic mutations are frequent in human cancers. BAP1 tumour suppressor activity has been attributed to its nuclear localization, where it helps to maintain genome integrity. The possible activity of BAP1 in the cytoplasm is unknown. Cells with reduced levels of BAP1 exhibit chromosomal abnormalities and decreased DNA repair by homologous recombination, indicating that BAP1 dosage is critical. Cells with extensive DNA damage should die and not grow into malignancies. Here we discover that BAP1 localizes at the endoplasmic reticulum. Here, it binds, deubiquitylates, and stabilizes type 3 inositol-1,4,5-trisphosphate receptor (IP3R3), modulating calcium (Ca2+) release from the endoplasmic reticulum into the cytosol and mitochondria, promoting apoptosis. Reduced levels of BAP1 in BAP1+/− carriers cause reduction both of IP3R3 levels and of Ca2+ flux, preventing BAP1+/− cells that accumulate DNA damage from executing apoptosis. A higher fraction of cells exposed to either ionizing or ultraviolet radiation, or to asbestos, survive genotoxic stress, resulting in a higher rate of cellular transformation. We propose that the high incidence of cancers in BAP1+/− carriers results from the combined reduced nuclear and cytoplasmic activities of BAP1. Our data provide a mechanistic rationale for the powerful ability of BAP1 to regulate gene–environment interaction in human carcinogenesis.


American Journal of Pathology | 2013

Continuous Exposure to Chrysotile Asbestos Can Cause Transformation of Human Mesothelial Cells via HMGB1 and TNF-α Signaling

Fang Qi; Gordon Okimoto; Sandro Jube; Andrea Napolitano; Harvey I. Pass; Rozalia Laczko; Richard M. DeMay; Ghazal Khan; Maarit Tiirikainen; Caterina Rinaudo; Alessandro Croce; Haining Yang; Giovanni Gaudino; Michele Carbone

Malignant mesothelioma is strongly associated with asbestos exposure. Among asbestos fibers, crocidolite is considered the most and chrysotile the least oncogenic. Chrysotile accounts for more than 90% of the asbestos used worldwide, but its capacity to induce malignant mesothelioma is still debated. We found that chrysotile and crocidolite exposures have similar effects on human mesothelial cells. Morphological and molecular alterations suggestive of epithelial-mesenchymal transition, such as E-cadherin down-regulation and β-catenin phosphorylation followed by nuclear translocation, were induced by both chrysotile and crocidolite. Gene expression profiling revealed high-mobility group box-1 protein (HMGB1) as a key regulator of the transcriptional alterations induced by both types of asbestos. Crocidolite and chrysotile induced differential expression of 438 out of 28,869 genes interrogated by oligonucleotide microarrays. Out of these 438 genes, 57 were associated with inflammatory and immune response and cancer, and 14 were HMGB1 targeted genes. Crocidolite-induced gene alterations were sustained, whereas chrysotile-induced gene alterations returned to background levels within 5 weeks. Similarly, HMGB1 release in vivo progressively increased for 10 or more weeks after crocidolite exposure, but returned to background levels within 8 weeks after chrysotile exposure. Continuous administration of chrysotile was required for sustained high serum levels of HMGB1. These data support the hypothesis that differences in biopersistence influence the biological activities of these two asbestos fibers.


Clinical Cancer Research | 2016

HMGB1 and Its Hyperacetylated Isoform are Sensitive and Specific Serum Biomarkers to Detect Asbestos Exposure and to Identify Mesothelioma Patients

Andrea Napolitano; Daniel J. Antoine; Laura Pellegrini; Francine Baumann; Ian Pagano; Sandra Pastorino; Chandra Goparaju; Kirill Prokrym; Claudia Canino; Harvey I. Pass; Michele Carbone; Haining Yang

Purpose: To determine whether serum levels of high mobility group box protein 1 (HMGB1) could differentiate malignant mesothelioma patients, asbestos-exposed individuals, and unexposed controls. Experimental Design: Hyperacetylated and nonacetylated HMGB1 (together referred to as total HMGB1) were blindly measured in blood collected from malignant mesothelioma patients (n = 22), individuals with verified chronic asbestos exposure (n = 20), patients with benign pleural effusions (n = 13) or malignant pleural effusions not due to malignant mesothelioma (n = 25), and healthy controls (n = 20). Blood levels of previously proposed malignant mesothelioma biomarkers fibulin-3, mesothelin, and osteopontin were also measured in nonhealthy individuals. Results: HMGB1 serum levels reliably distinguished malignant mesothelioma patients, asbestos-exposed individuals, and unexposed controls. Total HMGB1 was significantly higher in malignant mesothelioma patients and asbestos-exposed individuals compared with healthy controls. Hyperacetylated HMGB1 was significantly higher in malignant mesothelioma patients compared with asbestos-exposed individuals and healthy controls, and did not vary with tumor stage. At the cut-off value of 2.00 ng/mL, the sensitivity and specificity of serum hyperacetylated HMGB1 in differentiating malignant mesothelioma patients from asbestos-exposed individuals and healthy controls was 100%, outperforming other previously proposed biomarkers. Combining HMGB1 and fibulin-3 provided increased sensitivity and specificity in differentiating malignant mesothelioma patients from patients with cytologically benign or malignant non–mesothelioma pleural effusion. Conclusions: Our results are significant and clinically relevant as they provide the first biomarker of asbestos exposure and indicate that hyperacetylated HMGB1 is an accurate biomarker to differentiate malignant mesothelioma patients from individuals occupationally exposed to asbestos and unexposed controls. A trial to independently validate these findings will start soon. Clin Cancer Res; 22(12); 3087–96. ©2016 AACR.


Journal of Translational Medicine | 2014

Evaluation of clonal origin of malignant mesothelioma

Sabahattin Comertpay; Sandra Pastorino; Mika Tanji; Rosanna Mezzapelle; Oriana Strianese; Andrea Napolitano; Francine Baumann; Tracey L. Weigel; Joseph S. Friedberg; Paul H. Sugarbaker; Thomas Krausz; Ena Wang; Amy Powers; Giovanni Gaudino; Shreya Kanodia; Harvey I. Pass; Barbara L. Parsons; Haining Yang; Michele Carbone

BackgroundThe hypothesis that most cancers are of monoclonal origin is often accepted as a fact in the scientific community. This dogma arose decades ago, primarily from the study of hematopoietic malignancies and sarcomas, which originate as monoclonal tumors. The possible clonal origin of malignant mesothelioma (MM) has not been investigated. Asbestos inhalation induces a chronic inflammatory response at sites of fiber deposition that may lead to malignant transformation after 30-50 years latency. As many mesothelial cells are simultaneously exposed to asbestos fibers and to asbestos-induced inflammation, it may be possible that more than one cell undergoes malignant transformation during the process that gives rise to MM, and result in a polyclonal malignancy.Methods and resultsTo investigate the clonality patterns of MM, we used the HUMARA (Human Androgen Receptor) assay to examine 16 biopsies from 14 women MM patients. Out of 16 samples, one was non-informative due to skewed Lyonization in its normal adjacent tissue. Fourteen out of the 15 informative samples revealed two electrophoretically distinct methylated HUMARA alleles, the Corrected Allele Ratio (CR) calculated on the allele peak areas indicating polyclonal origin MM.ConclusionsOur results show that MM originate as polyclonal tumors and suggest that the carcinogenic “field effect” of mineral fibers leads to several premalignant clones that give rise to these polyclonal malignancies.


PLOS Genetics | 2015

Combined Genetic and Genealogic Studies Uncover a Large BAP1 Cancer Syndrome Kindred Tracing Back Nine Generations to a Common Ancestor from the 1700s

Michele Carbone; Erin Flores; Mitsuru Emi; Todd A. Johnson; Tatsuhiko Tsunoda; Dusty Behner; Harriet Hoffman; Mary Hesdorffer; Masaki Nasu; Andrea Napolitano; Amy Powers; Michael Minaai; Francine Baumann; Peter Bryant-Greenwood; Olivia Lauk; Michaela B. Kirschner; Walter Weder; Isabelle Opitz; Harvey I. Pass; Giovanni Gaudino; Sandra Pastorino; Haining Yang

We recently discovered an inherited cancer syndrome caused by BRCA1-Associated Protein 1 (BAP1) germline mutations, with high incidence of mesothelioma, uveal melanoma and other cancers and very high penetrance by age 55. To identify families with the BAP1 cancer syndrome, we screened patients with family histories of multiple mesotheliomas and melanomas and/or multiple cancers. We identified four families that shared an identical BAP1 mutation: they lived across the US and did not appear to be related. By combining family histories, molecular genetics, and genealogical approaches, we uncovered a BAP1 cancer syndrome kindred of ~80,000 descendants with a core of 106 individuals, whose members descend from a couple born in Germany in the early 1700s who immigrated to North America. Their descendants spread throughout the country with mutation carriers affected by multiple malignancies. Our data show that, once a proband is identified, extended analyses of these kindreds, using genomic and genealogical studies to identify the most recent common ancestor, allow investigators to uncover additional branches of the family that may carry BAP1 mutations. Using this knowledge, we have identified new branches of this family carrying BAP1 mutations. We have also implemented early-detection strategies that help identify cancers at early-stage, when they can be cured (melanomas) or are more susceptible to therapy (MM and other malignancies).


Proceedings of the National Academy of Sciences of the United States of America | 2016

High-density array-CGH with targeted NGS unmask multiple noncontiguous minute deletions on chromosome 3p21 in mesothelioma

Yoshie Yoshikawa; Mitsuru Emi; Tomoko Hashimoto-Tamaoki; Masaki Ohmuraya; Ayuko Sato; Tohru Tsujimura; Seiki Hasegawa; Takashi Nakano; Masaki Nasu; Sandra Pastorino; Agata Szymiczek; Angela Bononi; Mika Tanji; Ian Pagano; Giovanni Gaudino; Andrea Napolitano; Chandra Goparaju; Harvey I. Pass; Haining Yang; Michele Carbone

Significance We found that gene mutations/deletions are frequent in mesothelioma and occur through a variety of DNA alterations. We identified genes implicated in malignant mesothelioma: SETD2, SMARCC1, PBRM1. Previous next-generation studies (NGS) underestimated the frequency of genetic alterations in malignant mesothelioma because NGS mainly identifies nucleotide level mutations. Our findings are of general relevance to the field of cancer research that relies almost exclusively on NGS to identify gene alterations in cancer biopsies, and uses this information to design specific molecular therapies. An integrated approach that includes a high-density comparative genomic hybridization array and NGS or targeted-NGS, as conducted here, may reveal additional genes that are inactivated by mechanisms other than point mutations. This information may inform us on how to design more effective molecular therapies. We used a custom-made comparative genomic hybridization array (aCGH; average probe interval 254 bp) to screen 33 malignant mesothelioma (MM) biopsies for somatic copy number loss throughout the 3p21 region (10.7 Mb) that harbors 251 genes, including BRCA1 (breast cancer 1)-associated protein 1 (BAP1), the most commonly mutated gene in MM. We identified frequent minute biallelic deletions (<3 kb) in 46 of 251 genes: four were cancer-associated genes: SETD2 (SET domain-containing protein 2) (7 of 33), BAP1 (8 of 33), PBRM1 (polybromo 1) (3 of 33), and SMARCC1 (switch/sucrose nonfermentable- SWI/SNF-related, matrix-associated, actin-dependent regulator of chromatin, subfamily c, member 1) (2 of 33). These four genes were further investigated by targeted next-generation sequencing (tNGS), which revealed sequence-level mutations causing biallelic inactivation. Combined high-density aCGH and tNGS revealed biallelic gene inactivation in SETD2 (9 of 33, 27%), BAP1 (16 of 33, 48%), PBRM1 (5 of 33, 15%), and SMARCC1 (2 of 33, 6%). The incidence of genetic alterations detected is much higher than reported in the literature because minute deletions are not detected by NGS or commercial aCGH. Many of these minute deletions were not contiguous, but rather alternated with segments showing oscillating copy number changes along the 3p21 region. In summary, we found that in MM: (i) multiple minute simultaneous biallelic deletions are frequent in chromosome 3p21, where they occur as distinct events involving multiple genes; (ii) in addition to BAP1, mutations of SETD2, PBRM1, and SMARCC1 are frequent in MM; and (iii) our results suggest that high-density aCGH combined with tNGS provides a more precise estimate of the frequency and types of genes inactivated in human cancer than approaches based exclusively on NGS strategy.


Cell Death and Disease | 2015

Aspirin delays mesothelioma growth by inhibiting HMGB1-mediated tumor progression

Haining Yang; L Pellegrini; Andrea Napolitano; Carlotta Giorgi; Sandro Jube; Alessandro Preti; C J Jennings; F De Marchis; E G Flores; D Larson; I Pagano; Mika Tanji; Amy Powers; Shreya Kanodia; Giovanni Gaudino; S Pastorino; Harvey I. Pass; Paolo Pinton; Marco Bianchi; Michele Carbone

High-mobility group box 1 (HMGB1) is an inflammatory molecule that has a critical role in the initiation and progression of malignant mesothelioma (MM). Aspirin (acetylsalicylic acid, ASA) is the most widely used nonsteroidal anti-inflammatory drug that reduces the incidence, metastatic potential and mortality of many inflammation-induced cancers. We hypothesized that ASA may exert anticancer properties in MM by abrogating the carcinogenic effects of HMGB1. Using HMGB1-secreting and -non-secreting human MM cell lines, we determined whether aspirin inhibited the hallmarks of HMGB1-induced MM cell growth in vitro and in vivo. Our data demonstrated that ASA and its metabolite, salicylic acid (SA), inhibit motility, migration, invasion and anchorage-independent colony formation of MM cells via a novel HMGB1-mediated mechanism. ASA/SA, at serum concentrations comparable to those achieved in humans taking therapeutic doses of aspirin, and BoxA, a specific inhibitor of HMGB1, markedly reduced MM growth in xenograft mice and significantly improved survival of treated animals. The effects of ASA and BoxA were cyclooxygenase-2 independent and were not additive, consistent with both acting via inhibition of HMGB1 activity. Our findings provide a rationale for the well documented, yet poorly understood antitumorigenic activity of aspirin, which we show proceeds via HMGB1 inhibition. Moreover, the use of BoxA appears to allow a more efficient HMGB1 targeting while eluding the known gastrointestinal side effects of ASA. Our findings are directly relevant to MM. Given the emerging importance of HMGB1 and its tumor-promoting functions in many cancer types, and of aspirin in cancer prevention and therapy, our investigation is poised to provide broadly applicable information.

Collaboration


Dive into the Andrea Napolitano's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge