Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andrea Newbold is active.

Publication


Featured researches published by Andrea Newbold.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Analysis of the apoptotic and therapeutic activities of histone deacetylase inhibitors by using a mouse model of B cell lymphoma.

Ralph K. Lindemann; Andrea Newbold; Kate Whitecross; Leonie A. Cluse; Ailsa J. Frew; Leigh Ellis; Steven P. Williams; Adrian Wiegmans; Anthony E. Dear; Clare L. Scott; M. Pellegrini; Andrew Wei; Victoria M. Richon; Paul A. Marks; Scott W. Lowe; Mark J. Smyth; Ricky W. Johnstone

Histone deacetylase inhibitors (HDACi) can elicit a range of biological responses that affect tumor growth and survival, including inhibition of cell cycle progression, induction of tumor cell-selective apoptosis, suppression of angiogenesis, and modulation of immune responses, and show promising activity against hematological malignancies in clinical trials. Using the Eμ-myc model of B cell lymphoma, we screened tumors with defined genetic alterations in apoptotic pathways for therapeutic responsiveness to the HDACi vorinostat. We demonstrated a direct correlation between induction of tumor cell apoptosis in vivo and therapeutic efficacy. Vorinostat did not require p53 activity or a functional death receptor pathway to kill Eμ-myc lymphomas and mediate a therapeutic response but depended on activation of the intrinsic apoptotic pathway with the proapoptotic BH3-only proteins Bid and Bim playing an important role. Our studies provide important information regarding the mechanisms of action of HDACi that have broad implications regarding stratification of patients receiving HDACi therapy alone or in combination with other anticancer agents.


Blood | 2009

The histone deacetylase inhibitors LAQ824 and LBH589 do not require death receptor signaling or a functional apoptosome to mediate tumor cell death or therapeutic efficacy

Leigh Ellis; Michael Bots; Ralph K. Lindemann; Jessica E. Bolden; Andrea Newbold; Leonie A. Cluse; Clare L. Scott; Andreas Strasser; Peter Atadja; Scott W. Lowe; Ricky W. Johnstone

LAQ824 and LBH589 (panobinostat) are histone deacetylase inhibitors (HDACi) developed as cancer therapeutics and we have used the Emu-myc lymphoma model to identify the molecular events required for their antitumor effects. Induction of tumor cell death was necessary for these agents to mediate therapeutic responses in vivo and both HDACi engaged the intrinsic apoptotic cascade that did not require p53. Death receptor pathway blockade had no effect on the therapeutic activities of LAQ824 and LBH589; however, overexpression of Bcl-2 or Bcl-X(L) protected lymphoma cells from HDACi-induced killing and suppressed their therapeutic activities. Deletion of Apaf-1 or Caspase-9 delayed HDACi-induced lymphoma killing in vitro and in vivo, associated with suppression of many biochemical indicators of apoptosis, but did not provide long-term resistance to these agents and failed to inhibit their therapeutic activities. Emu-myc lymphomas lacking a functional apoptosome displayed morphologic and biochemical features of autophagy after treatment with LAQ824 and LBH589, indicating that, in the absence of a complete intrinsic apoptosis pathway involving apoptosome formation, these HDACi can still mediate a therapeutic response. Our data indicate that damage to the mitochondria is the key event necessary for LAQ824 and LBH589 to mediate tumor cell death and a robust therapeutic response.


Advances in Cancer Research | 2012

Intrinsic and extrinsic apoptotic pathway signaling as determinants of histone deacetylase inhibitor antitumor activity.

Geoffrey M. Matthews; Andrea Newbold; Ricky W. Johnstone

Histone deacetylase inhibitors (HDACi) can elicit a range of biological responses that impede the growth and/or survival of tumor cells. Depending on the physiological context, HDACi can induce apoptosis via two well-defined apoptotic pathways; the intrinsic/mitochondrial pathway and the death receptor (DR)/extrinsic pathway. A number of groups have demonstrated that overexpression of prosurvival Bcl-2 family members significantly reduces HDACi-mediated tumor cell death and therapeutic efficacy in preclinical models. In many cases, HDACi activate the intrinsic pathway via upregulation of a number of proapoptotic BH3-only Bcl-2 family genes including Bim, Bid, and Bmf. Additionally, HDACi can engage the extrinsic pathway through upregulation of DR expression, reductions in c-FLIP, and upregulation of ligands such as TRAIL. Overall, it appears that activation of the intrinsic apoptotic pathway is the predominant mechanism of HDACi-induced tumor cell death; however, the DR pathway may also be engaged, either to amplify the apoptotic signal through the intrinsic pathway or to directly induce cell death.


Molecular Cancer Therapeutics | 2008

Characterisation of the novel apoptotic and therapeutic activities of the histone deacetylase inhibitor romidepsin

Andrea Newbold; Ralph K. Lindemann; Leonie A. Cluse; Kate Whitecross; Anthony E. Dear; Ricky W. Johnstone

Histone deacetylase inhibitors (HDACi) are compounds that target the epigenome and cause tumor cell-selective apoptosis. A large number of these agents that have different chemical structures and can target multiple HDACs are being testing in clinical trials and vorinostat is now an approved drug for the treatment of cutaneous T-cell lymphoma. Although these agents are showing promise for the treatment of hematologic malignancies, it is possible that different drugs may have different mechanistic, biological, and therapeutic activities. When comparing an HDACi belonging to the hydroxamic acid class of compounds (vorinostat) with a cyclic tetrapeptide (romidepsin), we showed that these agents regulate the expression of a common set of cellular genes, but certain genes specifically responded to each agent. Using the Eμ-myc mouse model of B-cell lymphoma, we showed previously that overexpression of the prosurvival proteins Bcl-2 and Bcl-XL inhibited the apoptotic and therapeutic activities of the vorinostat. Herein, we compared and contrasted the apoptotic-inducing activities of the hydroxamic acid oxamflatin with romidepsin. Like vorinostat, oxamflatin was unable to kill lymphomas overexpressing Bcl-2 and Bcl-XL, indicating that these proteins can generally protect cells against this class of HDACi. In contrast, romidepsin was able to induce apoptosis in lymphomas overexpressing Bcl-2 with delayed kinetics of cell death and could mediate therapeutic responses against these lymphomas. However, romidepsin was inactive when Bcl-XL was overexpressed. These data provide strong support that HDACi of different chemical classes may have subtle yet potentially important differences in their molecular and biological activities. [Mol Cancer Ther 2008;7(5):1066–79]


Blood | 2013

Combined inhibition of PI3K-related DNA damage response kinases and mTORC1 induces apoptosis in MYC-driven B-cell lymphomas.

Jake Shortt; Benjamin P. Martin; Andrea Newbold; Katherine M. Hannan; Jennifer R. Devlin; Adele Baker; Rachael Ralli; Carleen Cullinane; Clemens A. Schmitt; Maurice Reimann; Michael N. Hall; Meaghan Wall; Ross D. Hannan; Richard B. Pearson; Grant A. McArthur; Ricky W. Johnstone

Pharmacological strategies capable of directly targeting MYC are elusive. Previous studies have shown that MYC-driven lymphomagenesis is associated with mammalian target of rapamycin (mTOR) activation and a MYC-evoked DNA damage response (DDR) transduced by phosphatidylinositol-3-kinase (PI3K)-related kinases (DNA-PK, ATM, and ATR). Here we report that BEZ235, a multitargeted pan-PI3K/dual-mTOR inhibitor, potently killed primary Myc-driven B-cell lymphomas and human cell lines bearing IG-cMYC translocations. Using pharmacologic and genetic dissection of PI3K/mTOR signaling, dual DDR/mTORC1 inhibition was identified as a key mediator of apoptosis. Moreover, apoptosis was initiated at drug concentrations insufficient to antagonize PI3K/mTORC2-regulated AKT phosphorylation. p53-independent induction of the proapoptotic BH3-only protein BMF was identified as a mechanism by which dual DDR/mTORC1 inhibition caused lymphoma cell death. BEZ235 treatment induced apoptotic tumor regressions in vivo that correlated with suppression of mTORC1-regulated substrates and reduced H2AX phosphorylation and also with feedback phosphorylation of AKT. These mechanistic studies hold important implications for the use of multitargeted PI3K inhibitors in the treatment of hematologic malignancies. In particular, the newly elucidated role of PI3K-related DDR kinases in response to PI3K inhibitors offers a novel therapeutic opportunity for the treatment of hematologic malignancies with an MYC-driven DDR.


Cell Death & Differentiation | 2012

PIDDosome-independent tumor suppression by Caspase-2

Claudia Manzl; Lukas Peintner; Gerhard Krumschnabel; Florian J. Bock; Verena Labi; Mathias Drach; Andrea Newbold; Ricky W. Johnstone; Andreas Villunger

The PIDDosome, a multiprotein complex constituted of the ‘p53-induced protein with a death domain (PIDD), ‘receptor-interacting protein (RIP)-associated ICH-1/CED-3 homologous protein with a death domain’ (RAIDD) and pro-Caspase-2 has been defined as an activating platform for this apoptosis-related protease. PIDD has been implicated in p53-mediated cell death in response to DNA damage but also in DNA repair and nuclear factor kappa-light-chain enhancer (NF-κB) activation upon genotoxic stress, together with RIP-1 kinase and Nemo/IKKγ. As all these cellular responses are critical for tumor suppression and deregulated expression of individual PIDDosome components has been noted in human cancer, we investigated their role in oncogenesis induced by DNA damage or oncogenic stress in gene-ablated mice. We observed that Pidd or Caspase-2 failed to suppress lymphoma formation triggered by γ-irradiation or 3-methylcholanthrene-driven fibrosarcoma development. In contrast, Caspase-2 showed tumor suppressive capacity in response to aberrant c-Myc expression, which did not rely on PIDD, the BH3-only protein Bid (BH3 interacting domain death agonist) or the death receptor ligand Trail (TNF-related apoptosis-inducing ligand), but associated with reduced rates of p53 loss and increased extranodal dissemination of tumor cells. In contrast, Pidd deficiency associated with abnormal M-phase progression and delayed disease onset, indicating that both proteins are differentially engaged upon oncogenic stress triggered by c-Myc, leading to opposing effects on tumor-free survival.


Molecular Cancer Therapeutics | 2013

Molecular and biologic analysis of histone deacetylase inhibitors with diverse specificities.

Andrea Newbold; Geoffrey M. Matthews; Michael Bots; Leonie A. Cluse; Christopher J. Clarke; Kellie M. Banks; Carleen Cullinane; Jessica E. Bolden; Ailsa J. Christiansen; Ross A. Dickins; Claudia Miccolo; Susanna Chiocca; Astrid M. Kral; Nicole Ozerova; Thomas A. Miller; Joey L. Methot; Victoria M. Richon; J. Paul Secrist; Saverio Minucci; Ricky W. Johnstone

Histone deacetylase inhibitors (HDACi) are anticancer agents that induce hyperacetylation of histones, resulting in chromatin remodeling and transcriptional changes. In addition, nonhistone proteins, such as the chaperone protein Hsp90, are functionally regulated through hyperacetylation mediated by HDACis. Histone acetylation is thought to be primarily regulated by HDACs 1, 2, and 3, whereas the acetylation of Hsp90 has been proposed to be specifically regulated through HDAC6. We compared the molecular and biologic effects induced by an HDACi with broad HDAC specificity (vorinostat) with agents that predominantly inhibited selected class I HDACs (MRLB-223 and romidepsin). MRLB-223, a potent inhibitor of HDACs 1 and 2, killed tumor cells using the same apoptotic pathways as the HDAC 1, 2, 3, 6, and 8 inhibitor vorinostat. However, vorinostat induced histone hyperacetylation and killed tumor cells more rapidly than MRLB-223 and had greater therapeutic efficacy in vivo. FDCP-1 cells dependent on the Hsp90 client protein Bcr-Abl for survival, were killed by all HDACis tested, concomitant with caspase-dependent degradation of Bcr-Abl. These studies provide evidence that inhibition of HDAC6 and degradation of Bcr-Abl following hyperacetylation of Hsp90 is likely not a major mechanism of action of HDACis as had been previously posited. Mol Cancer Ther; 12(12); 2709–21. ©2013 AACR.


Oncogene | 2014

The role of p21 waf1/cip1 and p27 Kip1 in HDACi-mediated tumor cell death and cell cycle arrest in the Eμ-myc model of B-cell lymphoma

Andrea Newbold; Jessica M. Salmon; Ben P. Martin; Kym Stanley; Ricky W. Johnstone

Following the establishment of histone deacetylases (HDACs) as promising therapeutic targets for the reversal of aberrant epigenetic states associated with cancer, the development of HDAC inhibitors (HDACi) and their underlying mechanisms of action has been a significant area of scientific interest. HDACi induce diverse biological responses including the inhibition of cell proliferation by blocking progression through the G1 or G2/M phases of the cell cycle. As a putative tumor-suppressor protein, p21waf1/cip1 influences cell proliferation by inhibiting the activity of cyclin–cyclin-dependent kinase (CDK) complexes at the G1/S and G2/M cell cycle checkpoints. HDACi transcriptionally activate CDKN1A, and it has been proposed that induction of p21waf1/cip1 can determine if a cell undergoes apoptosis or cell cycle arrest following HDACi treatment. In the Eμ-myc transgenic mouse model of B-cell lymphoma, knockout of cdkn1a had no effect on disease latency, indicating that p21waf1/cip1 did not function as a tumor suppressor in this system. Although HDACi robustly induced expression of p21waf1/cip1 in wild-type Eμ-myc lymphomas, deletion of cdkn1a did not sensitize the lymphoma cells to HDACi-induced apoptosis and HDACi-induced cell cycle arrest still occurred. However, knockdown of cdkn1b in cdkn1a knockout lymphomas resulted in defective vorinostat-mediated arrest at G1/S indicating an essential role of p27Kip1 in mediating this biological response to vorinostat. These data demonstrate that induction of cdkn1a does not regulate HDACi-mediated tumor cell apoptosis and refute the notion that p21waf1/cip1 is an obligate mediator of HDACi-induced cell cycle arrest.


FEBS Journal | 2016

How do tumor cells respond to HDAC inhibition

Andrea Newbold; Katrina J. Falkenberg; H. Miles Prince; Ricky W. Johnstone

It is now well recognized that mutations, deregulated expression, and aberrant recruitment of epigenetic readers, writers, and erasers are fundamentally important processes in the onset and maintenance of many human tumors. The molecular, biological, and biochemical characteristics of a particular class of epigenetic erasers, the histone deacetylases (HDACs), have been extensively studied and small‐molecule HDAC inhibitors (HDACis) have now been clinically approved for the treatment of human hemopoietic malignancies. This review explores our current understanding of the biological and molecular effects on tumor cells following HDACi treatment. The predominant responses include induction of tumor cell death and inhibition of proliferation that in experimental models have been linked to therapeutic efficacy. However, tumor cell‐intrinsic responses to HDACi, including modulating tumor immunogenicity have also been described and may have substantial roles in mediating the antitumor effects of HDACi. We posit that the field has failed to fully reconcile the biological consequences of exposure to HDACis with the molecular events that underpin these responses, however progress is being made. Understanding the pleiotrophic activities of HDACis on tumor cells will hopefully fast track the development of more potent and selective HDACi that may be used alone or in combination to improve patient outcomes.


Molecular Cancer Therapeutics | 2016

BET-inhibition induces apoptosis in aggressive B-cell lymphoma via epigenetic regulation of BCL-2 family members.

Simon J. Hogg; Andrea Newbold; Stephin J. Vervoort; Leonie A. Cluse; Benjamin P. Martin; Gareth P. Gregory; Marcus Lefebure; Eva Vidacs; Richard W. Tothill; James E. Bradner; Jake Shortt; Ricky W. Johnstone

Targeting BET bromodomain proteins using small molecules is an emerging anticancer strategy with clinical evaluation of at least six inhibitors now underway. Although MYC downregulation was initially proposed as a key mechanistic property of BET inhibitors, recent evidence suggests that additional antitumor activities are important. Using the Eμ-Myc model of B-cell lymphoma, we demonstrate that BET inhibition with JQ1 is a potent inducer of p53-independent apoptosis that occurs in the absence of effects on Myc gene expression. JQ1 skews the expression of proapoptotic (Bim) and antiapoptotic (BCL-2/BCL-xL) BCL-2 family members to directly engage the mitochondrial apoptotic pathway. Consistent with this, Bim knockout or Bcl-2 overexpression inhibited apoptosis induction by JQ1. We identified lymphomas that were either intrinsically resistant to JQ1-mediated death or acquired resistance following in vivo exposure. Strikingly, in both instances BCL-2 was strongly upregulated and was concomitant with activation of RAS pathways. Eμ-Myc lymphomas engineered to express activated Nras upregulated BCL-2 and acquired a JQ1 resistance phenotype. These studies provide important information on mechanisms of apoptosis induction and resistance to BET-inhibition, while providing further rationale for the translation of BET inhibitors in aggressive B-cell lymphomas. Mol Cancer Ther; 15(9); 2030–41. ©2016 AACR.

Collaboration


Dive into the Andrea Newbold's collaboration.

Top Co-Authors

Avatar

Ricky W. Johnstone

Peter MacCallum Cancer Centre

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Leonie A. Cluse

Peter MacCallum Cancer Centre

View shared research outputs
Top Co-Authors

Avatar

Michael Bots

Peter MacCallum Cancer Centre

View shared research outputs
Top Co-Authors

Avatar

Carleen Cullinane

Peter MacCallum Cancer Centre

View shared research outputs
Top Co-Authors

Avatar

Ben P. Martin

Peter MacCallum Cancer Centre

View shared research outputs
Top Co-Authors

Avatar

Clare L. Scott

Walter and Eliza Hall Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar

Kate Whitecross

Peter MacCallum Cancer Centre

View shared research outputs
Top Co-Authors

Avatar

Scott W. Lowe

Memorial Sloan Kettering Cancer Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge