Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andrea Novelletto is active.

Publication


Featured researches published by Andrea Novelletto.


American Journal of Human Genetics | 2000

Tracing European Founder Lineages in the Near Eastern mtDNA Pool

Martin B. Richards; Vincent Macaulay; Eileen Hickey; Emilce Vega; Bryan Sykes; Valentina Guida; Chiara Rengo; Daniele Sellitto; Fulvio Cruciani; Toomas Kivisild; Richard Villems; Mark G. Thomas; Serge Rychkov; Oksana Rychkov; Yuri Rychkov; Mukaddes Gölge; Dimitar Dimitrov; Emmeline W. Hill; Daniel G. Bradley; Valentino Romano; Francesco Calì; Giuseppe Vona; Andrew G. Demaine; S.S. Papiha; Costas Triantaphyllidis; Gheorghe Stefanescu; Jiři Hatina; Michele Belledi; Anna Di Rienzo; Andrea Novelletto

Founder analysis is a method for analysis of nonrecombining DNA sequence data, with the aim of identification and dating of migrations into new territory. The method picks out founder sequence types in potential source populations and dates lineage clusters deriving from them in the settlement zone of interest. Here, using mtDNA, we apply the approach to the colonization of Europe, to estimate the proportion of modern lineages whose ancestors arrived during each major phase of settlement. To estimate the Palaeolithic and Neolithic contributions to European mtDNA diversity more accurately than was previously achievable, we have now extended the Near Eastern, European, and northern-Caucasus databases to 1,234, 2, 804, and 208 samples, respectively. Both back-migration into the source population and recurrent mutation in the source and derived populations represent major obstacles to this approach. We have developed phylogenetic criteria to take account of both these factors, and we suggest a way to account for multiple dispersals of common sequence types. We conclude that (i) there has been substantial back-migration into the Near East, (ii) the majority of extant mtDNA lineages entered Europe in several waves during the Upper Palaeolithic, (iii) there was a founder effect or bottleneck associated with the Last Glacial Maximum, 20,000 years ago, from which derives the largest fraction of surviving lineages, and (iv) the immigrant Neolithic component is likely to comprise less than one-quarter of the mtDNA pool of modern Europeans.


American Journal of Human Genetics | 2004

Phylogeographic analysis of haplogroup E3b (E-M215) y chromosomes reveals multiple migratory events within and out of Africa.

Fulvio Cruciani; Roberta La Fratta; Piero Santolamazza; Daniele Sellitto; Roberto Pascone; Pedro Moral; Elizabeth Watson; Valentina Guida; Eliane Beraud Colomb; Boriana Zaharova; João Lavinha; Giuseppe Vona; Rashid Aman; Francesco Calì; Nejat Akar; Martin B. Richards; Antonio Torroni; Andrea Novelletto; Rosaria Scozzari

We explored the phylogeography of human Y-chromosomal haplogroup E3b by analyzing 3401 individuals from five continents. Our data refine the phylogeny of the entire haplogroup, which appears as a collection of lineages with very different evolutionary histories, and reveal signatures of several distinct processes of migrations and/or recurrent gene flow that occurred in Africa and western Eurasia over the past 25000 years. In Europe, the overall frequency pattern of haplogroup E-M78 does not support the hypothesis of a uniform spread of people from a single parental Near Eastern population. The distribution of E-M81 chromosomes in Africa closely matches the present area of distribution of Berber-speaking populations on the continent, suggesting a close haplogroup-ethnic group parallelism. E-M34 chromosomes were more likely introduced in Ethiopia from the Near East. In conclusion, the present study shows that earlier work based on fewer Y-chromosome markers led to rather simple historical interpretations and highlights the fact that many population-genetic analyses are not robust to a poorly resolved phylogeny.


Neurology | 2012

CAG repeat expansion in Huntington disease determines age at onset in a fully dominant fashion

Jong-Min Lee; Eliana Marisa Ramos; Ji Hyun Lee; Tammy Gillis; Jayalakshmi S. Mysore; Michael R. Hayden; Simon C. Warby; Patrick J. Morrison; Martha Nance; Christopher A. Ross; Russell L. Margolis; Ferdinando Squitieri; S. Orobello; S. Di Donato; Estrella Gomez-Tortosa; Carmen Ayuso; Oksana Suchowersky; Ronald J. Trent; Elizabeth McCusker; Andrea Novelletto; Marina Frontali; Randi Jones; Tetsuo Ashizawa; Samuel Frank; Marie Saint-Hilaire; Steven M. Hersch; H.D. Rosas; Diane Lucente; Madeline Harrison; Andrea Zanko

Objective: Age at onset of diagnostic motor manifestations in Huntington disease (HD) is strongly correlated with an expanded CAG trinucleotide repeat. The length of the normal CAG repeat allele has been reported also to influence age at onset, in interaction with the expanded allele. Due to profound implications for disease mechanism and modification, we tested whether the normal allele, interaction between the expanded and normal alleles, or presence of a second expanded allele affects age at onset of HD motor signs. Methods: We modeled natural log-transformed age at onset as a function of CAG repeat lengths of expanded and normal alleles and their interaction by linear regression. Results: An apparently significant effect of interaction on age at motor onset among 4,068 subjects was dependent on a single outlier data point. A rigorous statistical analysis with a well-behaved dataset that conformed to the fundamental assumptions of linear regression (e.g., constant variance and normally distributed error) revealed significance only for the expanded CAG repeat, with no effect of the normal CAG repeat. Ten subjects with 2 expanded alleles showed an age at motor onset consistent with the length of the larger expanded allele. Conclusions: Normal allele CAG length, interaction between expanded and normal alleles, and presence of a second expanded allele do not influence age at onset of motor manifestations, indicating that the rate of HD pathogenesis leading to motor diagnosis is determined by a completely dominant action of the longest expanded allele and as yet unidentified genetic or environmental factors. Neurology® 2012;78:690–695


American Journal of Human Genetics | 2004

A predominantly neolithic origin for Y-chromosomal DNA variation in North Africa.

Barbara Arredi; Estella S. Poloni; Silvia Paracchini; Tatiana Zerjal; Dahmani M. Fathallah; Mohamed Makrelouf; Vincenzo Lorenzo Pascali; Andrea Novelletto; Chris Tyler-Smith

We have typed 275 men from five populations in Algeria, Tunisia, and Egypt with a set of 119 binary markers and 15 microsatellites from the Y chromosome, and we have analyzed the results together with published data from Moroccan populations. North African Y-chromosomal diversity is geographically structured and fits the pattern expected under an isolation-by-distance model. Autocorrelation analyses reveal an east-west cline of genetic variation that extends into the Middle East and is compatible with a hypothesis of demic expansion. This expansion must have involved relatively small numbers of Y chromosomes to account for the reduction in gene diversity towards the West that accompanied the frequency increase of Y haplogroup E3b2, but gene flow must have been maintained to explain the observed pattern of isolation-by-distance. Since the estimates of the times to the most recent common ancestor (TMRCAs) of the most common haplogroups are quite recent, we suggest that the North African pattern of Y-chromosomal variation is largely of Neolithic origin. Thus, we propose that the Neolithic transition in this part of the world was accompanied by demic diffusion of Afro-Asiatic-speaking pastoralists from the Middle East.


Archive | 2012

COHORT study oft the HSG. CAG repeat expansion in Huntington disease determines age at onset in al fully dominant fashion

Jong-Min Lee; Eliana Marisa Ramos; Ji Hyun Lee; Tammy Gillis; Jayalakshmi S. Mysore; Hayden; Simon C. Warby; Patrick J. Morrison; Martha Nance; Christopher A. Ross; Russell L. Margolis; Ferdinando Squitieri; S. Orobello; S Di Donato; Estrella Gomez-Tortosa; Carmen Ayuso; Oksana Suchowersky; Ronald J. Trent; Elizabeth McCusker; Andrea Novelletto; Marina Frontali; Randi Jones; Tetsuo Ashizawa; Samuel Frank; Marie-Helene Saint-Hilaire; Steven M. Hersch; H.D. Rosas; Diane Lucente; Madeline Harrison; Andrea Zanko

Objective: Age at onset of diagnostic motor manifestations in Huntington disease (HD) is strongly correlated with an expanded CAG trinucleotide repeat. The length of the normal CAG repeat allele has been reported also to influence age at onset, in interaction with the expanded allele. Due to profound implications for disease mechanism and modification, we tested whether the normal allele, interaction between the expanded and normal alleles, or presence of a second expanded allele affects age at onset of HD motor signs. Methods: We modeled natural log-transformed age at onset as a function of CAG repeat lengths of expanded and normal alleles and their interaction by linear regression. Results: An apparently significant effect of interaction on age at motor onset among 4,068 subjects was dependent on a single outlier data point. A rigorous statistical analysis with a well-behaved dataset that conformed to the fundamental assumptions of linear regression (e.g., constant variance and normally distributed error) revealed significance only for the expanded CAG repeat, with no effect of the normal CAG repeat. Ten subjects with 2 expanded alleles showed an age at motor onset consistent with the length of the larger expanded allele. Conclusions: Normal allele CAG length, interaction between expanded and normal alleles, and presence of a second expanded allele do not influence age at onset of motor manifestations, indicating that the rate of HD pathogenesis leading to motor diagnosis is determined by a completely dominant action of the longest expanded allele and as yet unidentified genetic or environmental factors. Neurology® 2012;78:690–695


American Journal of Human Genetics | 2003

A Genome Scan for Modifiers of Age at Onset in Huntington Disease: The HD MAPS Study

Jian Liang Li; Michael R. Hayden; Elisabeth W. Almqvist; Ryan R. Brinkman; Alexandra Durr; Catherine Dodé; Patrick J. Morrison; Oksana Suchowersky; Christopher A. Ross; Russell L. Margolis; Adam Rosenblatt; Estrella Gomez-Tortosa; David Mayo Cabrero; Andrea Novelletto; Marina Frontali; Martha Nance; Ronald J. Trent; Elizabeth McCusker; Randi Jones; Jane S. Paulsen; Madeline Harrison; Andrea Zanko; Ruth K. Abramson; Ana L. Russ; Beth Knowlton; Luc Djoussé; Jayalakshmi S. Mysore; Suzanne Tariot; Michael F. Gusella; Vanessa C. Wheeler

Huntington disease (HD) is caused by the expansion of a CAG repeat within the coding region of a novel gene on 4p16.3. Although the variation in age at onset is partly explained by the size of the expanded repeat, the unexplained variation in age at onset is strongly heritable (h2=0.56), which suggests that other genes modify the age at onset of HD. To identify these modifier loci, we performed a 10-cM density genomewide scan in 629 affected sibling pairs (295 pedigrees and 695 individuals), using ages at onset adjusted for the expanded and normal CAG repeat sizes. Because all those studied were HD affected, estimates of allele sharing identical by descent at and around the HD locus were adjusted by a positionally weighted method to correct for the increased allele sharing at 4p. Suggestive evidence for linkage was found at 4p16 (LOD=1.93), 6p21-23 (LOD=2.29), and 6q24-26 (LOD=2.28), which may be useful for investigation of genes that modify age at onset of HD.


Human Genetics | 2004

Y chromosomal haplogroup J as a signature of the post-neolithic colonization of Europe

F. Di Giacomo; Francesca Luca; L. O. Popa; Nejat Akar; Nicholas P. Anagnou; J. Banyko; Radim Brdicka; Guido Barbujani; F. Papola; G. Ciavarella; F. Cucci; L. Di Stasi; L. Gavrila; M. G. Kerimova; D. Kovatchev; Andrey I. Kozlov; Aphrodite Loutradis; V. Mandarino; C. Mammi; E. N. Michalodimitrakis; Giorgio Paoli; K. I. Pappa; G. Pedicini; L. Terrenato; Sergio Tofanelli; Patrizia Malaspina; Andrea Novelletto

In order to attain a finer reconstruction of the peopling of southern and central-eastern Europe from the Levant, we determined the frequencies of eight lineages internal to the Y chromosomal haplogroup J, defined by biallelic markers, in 22 population samples obtained with a fine-grained sampling scheme. Our results partially resolve a major multifurcation of lineages within the haplogroup. Analyses of molecular variance show that the area covered by haplogroup J dispersal is characterized by a significant degree of molecular radiation for unique event polymorphisms within the haplogroup, with a higher incidence of the most derived sub-haplogroups on the northern Mediterranean coast, from Turkey westward; here, J diversity is not simply a subset of that present in the area in which this haplogroup first originated. Dating estimates, based on simple tandem repeat loci (STR) diversity within each lineage, confirmed the presence of a major population structuring at the time of spread of haplogroup J in Europe and a punctuation in the peopling of this continent in the post-Neolithic, compatible with the expansion of the Greek world. We also present here, for the first time, a novel method for comparative dating of lineages, free of assumptions of STR mutation rates.


American Journal of Medical Genetics Part A | 2003

Interaction of normal and expanded CAG repeat sizes influences age at onset of Huntington disease

Luc Djoussé; Beth Knowlton; Michael R. Hayden; Elisabeth W. Almqvist; Ryan R. Brinkman; Christopher A. Ross; Russell L. Margolis; Adam Rosenblatt; Alexandra Durr; Catherine Dodé; Patrick J. Morrison; Andrea Novelletto; Marina Frontali; Ronald J. Trent; Elizabeth McCusker; Estrella Gomez-Tortosa; D. Mayo; Randi Jones; Andrea Zanko; Martha Nance; Ruth K. Abramson; Oksana Suchowersky; Jane S. Paulsen; Madeline Harrison; Qunying Yang; L. A. Cupples; James F. Gusella; Marcy E. MacDonald; Richard H. Myers

Huntington disease (HD) is a neurodegenerative disorder caused by the abnormal expansion of CAG repeats in the HD gene on chromosome 4p16.3. Past studies have shown that the size of expanded CAG repeat is inversely associated with age at onset (AO) of HD. It is not known whether the normal Huntington allele size influences the relation between the expanded repeat and AO of HD. Data collected from two independent cohorts were used to test the hypothesis that the unexpanded CAG repeat interacts with the expanded CAG repeat to influence AO of HD. In the New England Huntington Disease Center Without Walls (NEHD) cohort of 221 HD affected persons and in the HD‐MAPS cohort of 533 HD affected persons, we found evidence supporting an interaction between the expanded and unexpanded CAG repeat sizes which influences AO of HD (P = 0.08 and 0.07, respectively). The association was statistically significant when both cohorts were combined (P = 0.012). The estimated heritability of the AO residual was 0.56 after adjustment for normal and expanded repeats and their interaction. An analysis of tertiles of repeats sizes revealed that the effect of the normal allele is seen among persons with large HD repeat sizes (47–83). These findings suggest that an increase in the size of the normal repeat may mitigate the expression of the disease among HD affected persons with large expanded CAG repeats.


BMC Medical Genetics | 2006

Genome-wide significance for a modifier of age at neurological onset in Huntington's Disease at 6q23-24: the HD MAPS study

Jian Liang Li; Michael R. Hayden; Simon C. Warby; Alexandra Durr; Patrick J. Morrison; Martha Nance; Chirstopher A. Ross; Russell L. Margolis; Adam Rosenblatt; Ferdinando Squitieri; Luigi Frati; Estrella Gomez-Tortosa; Carmen Ayuso García; Oksana Suchowersky; Mary Lou Klimek; Ronald J. Trent; Elizabeth McCusker; Andrea Novelletto; Marina Frontali; Jane S. Paulsen; Randi Jones; Tetsuo Ashizawa; Alice Lazzarini; Vanessa C. Wheeler; Ranjana Prakash; Gang Xu; Luc Djoussé; Jayalakshmi S. Mysore; Tammy Gillis; Michael Hakky

BackgroundAge at onset of Huntingtons disease (HD) is correlated with the size of the abnormal CAG repeat expansion in the HD gene; however, several studies have indicated that other genetic factors also contribute to the variability in HD age at onset. To identify modifier genes, we recently reported a whole-genome scan in a sample of 629 affected sibling pairs from 295 pedigrees, in which six genomic regions provided suggestive evidence for quantitative trait loci (QTL), modifying age at onset in HD.MethodsIn order to test the replication of this finding, eighteen microsatellite markers, three from each of the six genomic regions, were genotyped in 102 newly recruited sibling pairs from 69 pedigrees, and data were analyzed, using a multipoint linkage variance component method, in the follow-up sample and the combined sample of 352 pedigrees with 753 sibling pairs.ResultsSuggestive evidence for linkage at 6q23-24 in the follow-up sample (LOD = 1.87, p = 0.002) increased to genome-wide significance for linkage in the combined sample (LOD = 4.05, p = 0.00001), while suggestive evidence for linkage was observed at 18q22, in both the follow-up sample (LOD = 0.79, p = 0.03) and the combined sample (LOD = 1.78, p = 0.002). Epistatic analysis indicated that there is no interaction between 6q23-24 and other loci.ConclusionIn this replication study, linkage for modifier of age at onset in HD was confirmed at 6q23-24. Evidence for linkage was also found at 18q22. The demonstration of statistically significant linkage to a potential modifier locus opens the path to location cloning of a gene capable of altering HD pathogenesis, which could provide a validated target for therapeutic development in the human patient.


Annals of Human Genetics | 2007

The Relationship Between CAG Repeat Length and Age of Onset Differs for Huntington's Disease Patients with Juvenile Onset or Adult Onset

J. Michael Andresen; Javier Gayán; Luc Djoussé; Simone Roberts; Denise Brocklebank; Stacey S. Cherny; Lon R. Cardon; James F. Gusella; Marcy E. MacDonald; Richard H. Myers; David E. Housman; Nancy S. Wexler; Judith Lorimer; Julie Porter; Fidela Gomez; Carol Moskowitz; Kelly Posner Gerstenhaber; Edith Shackell; Karen Marder; Graciela K. Penchaszadeh; Simone A. Roberts; Adam M. Brickman; Jacqueline Gray; Stephen R. Dlouhy; Sandra Wiktorski; Marion E. Hodes; P. Michael Conneally; John B. Penney; Jang Ho Cha; Micheal Irizarry

Age of onset for Huntingtons disease (HD) varies inversely with the length of the disease‐causing CAG repeat expansion in the HD gene. A simple exponential regression model yielded adjusted R‐squared values of 0.728 in a large set of Venezuelan kindreds and 0.642 in a North American, European, and Australian sample (the HD MAPS cohort). We present evidence that a two‐segment exponential regression curve provides a significantly better fit than the simple exponential regression. A plot of natural log‐transformed age of onset against CAG repeat length reveals this segmental relationship. This two‐segment exponential regression on age of onset data increases the adjusted R‐squared values by 0.012 in the Venezuelan kindreds and by 0.035 in the HD MAPS cohort. Although the amount of additional variance explained by the segmental regression approach is modest, the two slopes of the two‐segment regression are significantly different from each other in both the Venezuelan kindreds [F(2, 439) = 11.13, P= 2 × 10−5] and in the HD MAPS cohort [F(2, 688) = 38.27, P= 2 × 10−16]. In both populations, the influence of each CAG repeat on age of onset appears to be stronger in the adult‐onset range of CAG repeats than in the juvenile‐onset range.

Collaboration


Dive into the Andrea Novelletto's collaboration.

Top Co-Authors

Avatar

Patrizia Malaspina

University of Rome Tor Vergata

View shared research outputs
Top Co-Authors

Avatar

Marina Frontali

National Research Council

View shared research outputs
Top Co-Authors

Avatar

L. Terrenato

University of Rome Tor Vergata

View shared research outputs
Top Co-Authors

Avatar

Carla Jodice

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Fulvio Cruciani

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Rosaria Scozzari

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Paola Blasi

University of Rome Tor Vergata

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ferdinando Squitieri

Casa Sollievo della Sofferenza

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge