Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andrea R. Ferro is active.

Publication


Featured researches published by Andrea R. Ferro.


Journal of Exposure Science and Environmental Epidemiology | 2004

Elevated personal exposure to particulate matter from human activities in a residence.

Andrea R. Ferro; Royal J. Kopperud; Lynn M. Hildemann

Continuous laser particle counters collocated with time-integrated filter samplers were used to measure personal, indoor, and outdoor particulate matter (PM) concentrations for a variety of prescribed human activities during a 5-day experimental period in a home in Redwood City, CA, USA. The mean daytime personal exposures to PM2.5 and PM5 during prescribed activities were 6 and 17 times, respectively, as high as the pre-activity indoor background concentration. Activities that resulted in the highest exposures of PM2.5, PM5, and PM10 were those that disturbed dust reservoirs on furniture and textiles, such as dry dusting, folding clothes and blankets, and making a bed. The vigor of activity and type of flooring were also important factors for dust resuspension. Personal exposures to PM2.5 and PM5 were 1.4 and 1.6 times, respectively, as high as the indoor concentration as measured by a stationary monitor. The ratio of personal exposure to the indoor concentration was a function of both particle size and the distance of the human activity from the stationary indoor monitor. The results demonstrate that a wide variety of indoor human resuspension activities increase human exposure to PM and contribute to the “personal cloud” effect.


Aerosol Science and Technology | 2008

Resuspension of Dust Particles in a Chamber and Associated Environmental Factors

Jing Qian; Andrea R. Ferro

Experiments investigating particle resuspension from human activities were conducted in a full-scale experimental chamber. The experiments tested three types of flooring (vinyl tiles, new and old level-loop carpets) and two ventilation configurations (ceiling and side wall supply systems). The floorings were seeded with 0.1–10 μ m test particles. The airborne particle concentration was measured by an array of optical particle counters (OPCs) in the chamber. Resuspension rates were estimated in size ranges of 0.8–1, 1.0–2.0, 2.0–5.0, and 5.0–10 μm ranging from 10−5–10−2 hr−1, with higher resuspension rates associated with larger particles. Resuspension via walking activity varied from experiment to experiment. “Heavy and fast” walking was associated with higher resuspension rates than less active walking, most likely due to a combination of increased pace, increased air swirl velocity, and electrostatic field effects established by the walking. The type of floorings also influenced the particle resuspension. Given the same size and mass distribution of test particles per unit floor area, resuspension rates for the seeded new level-loop carpet were significantly higher than those for the vinyl tile flooring for larger particles (1.0–10 μ m) under the ceiling air supply system.


Journal of Exposure Science and Environmental Epidemiology | 1999

Investigations of the proximity effect for pollutants in the indoor environment.

Sandra J Mcbride; Andrea R. Ferro; Wayne R. Ott; Paul Switzer; Lynn M. Hildemann

More than a dozen indoor air quality studies have reported a large discrepancy between concentrations measured by stationary indoor monitors (SIMs) and personal exposure monitors (PEMs). One possible cause of this discrepancy is a source proximity effect, in which pollutant sources close to the respondent cause elevated and highly variable exposures. This paper describes three sets of experiments in a home using real-time measurements to characterize and quantify the proximity effect relative to a fixed distant location analogous to a SIM. In the first set of experiments, using sulfur hexafluoride (SF6) as a continuously emitting tracer pollutant from a point source, measurements of pollutant concentrations were made at different distances from the source under different air exchange rates and source strengths. A second set of experiments used a continuous point source of carbon monoxide (CO) tracer pollutant and an array of high time resolution monitors to collect simultaneous concentration readings at different locations in the room. A third set of experiments measured particle count density and particle-bound polycyclic aromatic hydrocarbon (PAH) concentrations emitted from a continuous particle point source (an incense stick) using two particle counters and two PAH monitors, and included human activity periods both before and during the source emission period. Results from the SF6 and CO experiments show that while the source is emitting, a source proximity effect can be seen in the increases in the mean and median and in the variability of concentrations closest to the source, even at a distance of 2.0 m from the source under certain settings of air exchange rate and source strength. CO concentrations at locations near the source were found to be higher and more variable than the predictions of the mass balance model. For particles emitted from the incense source, a source proximity effect was evident for the fine particle sizes (0.3 to 2.5 µm) and particle-bound PAH up to at least 1.0 m from the source. Analysis of spatial and temporal patterns in the data for the three tracer pollutants reveal marked transient elevations of concentrations as seen by the monitor, referred to as “microplumes,” particularly at locations close to the source. Mixing patterns in the room show complex patterns and directional effects, as evidenced by the variable intensity of the microplume activity at different locations. By characterizing the spatial and temporal variability of pollutant concentrations in the home, the proximity effect can be quantified, leading to improved indoor monitoring designs and models of human exposure to air pollutants.


Journal of The Air & Waste Management Association | 2008

Estimating the Resuspension Rate and Residence Time of Indoor Particles

Jing Qian; Andrea R. Ferro; Kathleen Fowler

Abstract Resuspension experiments were performed in a single-family residence. Resuspension by human activity was found to elevate the mass concentration of indoor particulate matter with an aerodynamic diameter less than 10 µm (PM10) an average of 2.5 times as high as the background level. As summarized from 14 experiments, the average estimated PM10 resuspension rate by a person walking on a carpeted floor was (1.4 ± 0.6) × 10−4 hr−1. The estimated residence time for PM in the indoor air following resuspension was less than 2 hr for PM10 and less than 3 hr for 2-μm tracer particles. However, experimental results show that the 2-μm tracer particles stayed in the combined indoor air and surface compartments much longer (»19 days). Using a two-compartment model to simulate a regular deposition and resuspension cycle by normal human activity (e.g., walking and sitting on furniture), we estimated residence time for 2-μm conservative particulate pollutants to be more than 7 decades without vacuum cleaning, and months if vacuum cleaning was done once per week. This finding supports the observed long residence time of persistent organic pollutants in indoor environments. This study introduces a method to evaluate the particle resuspension rate from semicontinuous concentration data of particulate matter (PM). It reveals that resuspension and subsequent exfiltration does not strongly affect the overall residence time of PM pollutants when compared with surface cleaning. However, resuspension substantially increases PM concentration, and thus increases short-term inhalation exposure to indoor PM pollutants.


Environment International | 2010

Resuspension of indoor aeroallergens and relationship to lung inflammation in asthmatic children.

Suresh Raja; Ying Xu; Andrea R. Ferro; Peter A. Jaques; Philip K. Hopke

Studies have shown links between the concentration of allergens found in homes and asthma. Inhalation of allergens present in settled residential dust can occur when the dust is resuspended via human activity or air currents. Although previous studies have measured allergen concentrations in homes, the focus has been on the presence of the allergens in settled dust samples. However, the actual inhalation exposure is to airborne allergens. The relationship between the settled dust composition and suspended allergens and endotoxin and the effect of exposure of these aeroallergens to asthmatics are not well understood for species typically present indoors. In this study, settled dust and airborne particulate matter samples were collected in the homes and school classrooms of asthmatic children of ages 9 to 16 and analyzed for endotoxin and allergens including dust mite and cockroach allergen, and dog and cat dander (Der p1, Der f1, Bla g1, Can f1, and Fel d1, respectively). Concentrations of cockroach allergen were below detection limit for all samples. Measurements of the settled dust samples show higher dust mite allergen in bedroom samples than in living room samples. Concentrations of airborne endotoxin and indoor allergens were generally higher in the homes than those measured at school. Within the homes, higher concentrations of airborne allergens and endotoxin were observed in the living rooms compared to the bedrooms. Resuspension rates for endotoxin, dust mite allergen, and, cat and dog dander were estimated in this study. Calculated resuspension rates for cat dander (8.1x10(-7)+/-3.5x10(-7)min(-1)) and dust mite allergen (2.1x10(-6)+/-7.6x10(-7)min(-1)and 1.4x10(-5)+/-4.6x10(-6)min(-1) for Der p 1 and Der f 1, respectively) were found to be higher than those for dog dander (3.1x10(-7)+/-1.3x10(-7)min(-1)) and endotoxin (3.6x10(-7)+/-1.6x10(-7)min(-1)). Markers of asthma inflammation including nitrate in exhaled breath condensate (EBC) and exhaled nitric oxide (eNO), were correlated with the concentrations of dust mite allergen (Der p 1) (Spearman r=0.598; p-value=0.068 for EBC and Spearman r=0.819; p-value=0.007 for eNO) and cat dander (Fel d 1) (Spearman r=0.917; p-value=0.0002 for EBC and Spearman r=0.697; p-value=0.054 for eNO) present in PM(10) samples.


Indoor Air | 2012

PM2.5 and ultrafine particles emitted during heating of commercial cooking oils.

Mehdi Amouei Torkmahalleh; Iman Goldasteh; Y. Zhao; N. M. Udochu; Alan Rossner; Philip K. Hopke; Andrea R. Ferro

UNLABELLED Seven commercial cooking oils were investigated to determine the PM(2.5) mass and ultrafine particle (UFP) emission rates and emission fluxes (rates per area). The results of this study showed that at 197°C soybean, safflower, canola, and peanut oils produced lower PM(2.5) emission fluxes (6.1 × 10(5), 3.0 × 10(5), 5.4 × 10(5), and 3.9 × 10(5) μg/min/m(2), respectively) than corn, coconut, and olive oils (2.7 × 10(6), 2.9 × 10(6), and 5.7 × 10(6) μg/min/m(2), respectively). Similarly, the total particle number flux at 197°C was lower for soybean, safflower, and canola oils (3.5 × 10(13), 8.6 × 10(13), and 1.0 × 10(14) #/min/m(2), respectively) than the corn, coconut, olive, and peanut oils (2.4 × 10(14), 1.4 × 10(14), 1.7 × 10(14), and 3.8 × 10(14) #/min/m(2), respectively). In general, oils with a higher smoke temperature resulted in lower particle concentrations over the measured temperature range (131-197°C). The percentage of UFP (particle diameter D(p) 10-100 nm) to total particles (D(p) 10-500 nm) ranged from 76 to 99% for this temperature range. Particles below 10 nm in diameter were not measured. The particle number size distribution showed a polydisperse behavior with major mode sizes ranging from 25 nm (for peanut oil) to 82 nm (for soybean oil) at an oil temperature of 197°C. PRACTICAL IMPLICATIONS The study presents particle number and mass concentrations, size distributions, emission rates, and emission fluxes from heating common cooking oils. The emission rates and emission fluxes can be used as inputs to models for indirect exposure analysis studies. The study may also be used to provide guidance on choosing oils that result in lower emission rates when heated.


Journal of Adhesion Science and Technology | 2008

Particle Detachment, Resuspension and Transport Due to Human Walking in Indoor Environments

Xinyu Zhang; Goodarz Ahmadi; Jing Qian; Andrea R. Ferro

In this work, particles detachment, resuspension and transport due to indoor human walking were studied numerically and experimentally. The stepping motions of the foot, down and up, were modeled using a combination of two effective circular disks. The flow generated by the squeezing film at the shoe–floor interface was assumed to be laminar and the corresponding velocity field was evaluated. The flow outside of the foot was modeled based on a wall jet theory. The effects of adhesion force and surface roughness were included in the analysis. Models for particle detachment and resuspension were developed. The effects of particle-wall adhesion force and the hydrodynamic drag and lift forces were included in the particle detachment model. Spreading and dispersion of resuspended particle clouds was also evaluated. Particle deposition, turbulent diffusion and Brownian diffusion were also included in the particle transport model. Comparisons of the model predictions for particle concentration in the room and for particle resuspension rate with the obtained experimental data showed good agreements. The simulation results showed that shoe bottom roughness, foot size, walking velocity, background velocity as well as the foot stepping velocities, down and up, all affected particle resuspension rate from the floor as well as the corresponding particle concentrations in the indoor environment.


Journal of The Air & Waste Management Association | 2004

Outdoor Versus Indoor Contributions to Indoor Particulate Matter (PM) Determined by Mass Balance Methods

Royal J. Kopperud; Andrea R. Ferro; Lynn M. Hildemann

Abstract This study compares an indoor-outdoor air-exchange mass balance model (IO model) with a chemical mass balance (CMB) model. The models were used to determine the contribution of outdoor sources and indoor resuspension activities to indoor particulate matter (PM) concentrations. Simultaneous indoor and outdoor measurements of PM concentration, chemical composition, and air-exchange rate were made for five consecutive days at a single-family residence using particle counters, neph-elometers, and filter samples of integrated PM with an aerodynamic diameter of less than or equal to 2.5 μm (PM2.5) and PM with an aerodynamic diameter of less than or equal to 5 μm (PM5). Chemical compositions were determined by inductively coupled plasma mass-spectrometry. During three high-activity days, prescribed activities, such as cleaning and walking, were conducted over a period of 4–6 hr. For the remaining two days, indoor activities were minimal. Indoor sources accounted for 60–89% of the PM2.5 and more than 90% of the PM5 for the high-activity days. For the minimal-activity days, indoor sources accounted for 27–47% of PM2.5 and 44–60% of the PM5. Good agreement was found between the two mass balance methods. Indoor PM2.5 originating outdoors averaged 53% of outdoor concentrations.


Indoor Air | 2014

A comparative study of walking-induced dust resuspension using a consistent test mechanism

Yilin Tian; Kyung Sul; Jing Qian; S. Mondal; Andrea R. Ferro

UNLABELLED Human walking influences indoor air quality mainly by resuspending dust particles settled on the floor. This study characterized walking-induced particle resuspension as a function of flooring type, relative humidity (RH), surface dust loading, and particle size using a consistent resuspension mechanism. Five types of flooring, including hardwood, vinyl, high-density cut pile carpet, low-density cut pile carpet, and high-density loop carpet, were tested with two levels of RH (40% and 70%) and surface dust loading (2 and 8 g/m(2) ), respectively. Resuspension fraction ra (fraction of surface dust resuspended per step) for house dust was found to be varied from 10(-7) to 10(-4) (particle size: 0.4-10 µm). Results showed that for particles at 0.4-3.0 µm, the difference in resuspension fraction between carpets and hard floorings was not significant. For particles at 3.0-10.0 µm, carpets exhibited higher resuspension fractions compared with hard floorings. Increased RH level enhanced resuspension on high-density cut pile carpet, whereas the opposite effect was observed on hard floorings. Higher surface dust loading was associated with lower resuspension fractions on carpets, while on hard floorings the effect of surface dust loading varied with different RH levels. PRACTICAL IMPLICATIONS The results from this study validate the recommendation that people sensitive to allergens could select hard floorings to reduce exposure and related adverse health outcomes. The results can also be applied to exposure models to determine the overall impact of exposure to resuspension as compared with other particle sources.


Journal of Adhesion Science and Technology | 2013

Wind tunnel study and numerical simulation of dust particle resuspension from indoor surfaces in turbulent flows

Iman Goldasteh; Goodarz Ahmadi; Andrea R. Ferro

Particle resuspension from flooring is an important source of air pollution in the indoor environment. In this work, resuspension of monolayer, polydisperse, irregularly shaped dust particles from various types of floorings was studied via a series of wind tunnel experiments. The range of free-stream velocity needed for resuspension of dust particles was evaluated as a function of particle size and material of particles and surfaces. In addition, a Monte Carlo simulation for predicting the resuspension of dust particles was developed. The resuspension model took into account the effects of particle irregularity, particle surface roughness, and flow characteristics. The dust particle resuspension from different floorings for several particle sizes was evaluated. The model predictions for resuspension fractions were compared with the experimental data and good agreement was observed. The study provided information on the role of airflow velocity on irregular dust particle resuspension from common floorings.

Collaboration


Dive into the Andrea R. Ferro's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yilin Tian

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge