Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andrea Rechenburg is active.

Publication


Featured researches published by Andrea Rechenburg.


Critical Reviews in Environmental Science and Technology | 2012

Climate Change Impact Assessment of Food- and Waterborne Diseases

Jan C. Semenza; Susanne Herbst; Andrea Rechenburg; Jonathan E. Suk; Christoph Höser; Christiane Schreiber; Thomas Kistemann

The PubMed and ScienceDirect bibliographic databases were searched for the period of 1998–2009 to evaluate the impact of climatic and environmental determinants on food- and waterborne diseases. The authors assessed 1,642 short and concise sentences (key facts), which were extracted from 722 relevant articles and stored in a climate change knowledge base. Key facts pertaining to temperature, precipitation, water, and food for 6 selected pathogens were scrutinized, evaluated, and compiled according to exposure pathways. These key facts (corresponding to approximately 50,000 words) were mapped to 275 terminology terms identified in the literature, which generated 6,341 connections. These relationships were plotted on semantic network maps to examine the interconnections between variables. The risk of campylobacteriosis is associated with mean weekly temperatures, although this link is shown more strongly in the literature relating to salmonellosis. Irregular and severe rain events are associated with Cryptosporidium sp. outbreaks, while noncholera Vibrio sp. displays increased growth rates in coastal waters during hot summers. In contrast, for Norovirus and Listeria sp. the association with climatic variables was relatively weak, but much stronger for food determinants. Electronic data mining to assess the impact of climate change on food- and waterborne diseases assured a methodical appraisal of the field. This climate change knowledge base can support national climate change vulnerability, impact, and adaptation assessments and facilitate the management of future threats from infectious diseases. In the light of diminishing resources for public health this approach can help balance different climate change adaptation options.


International Journal of Environmental Health Research | 2009

Sewage effluent as a source of Campylobacter sp. in a surface water catchment.

Andrea Rechenburg; Thomas Kistemann

Campylobacter sp. can regularly be found in wastewater-affected surface waters. The occurrence of Campylobacter sp. in rivers, treated sewage and combined sewer overflows was analysed in a catchment with sparse annual precipitation. During regular treatment the reduction efficacy for Campylobacter sp. varies between 1.75 and 3.5 log10. However, Campylobacter sp. concentrations do not increase downstream in the river as more sewage treatment plants discharge into it. During rain events, the Campylobacter sp. concentration in the river upstream of any sewage plant rises and in the sewer overflow water it is more than 150-fold higher than the average concentration in the river water at the river mouth. The highest Campylobacter sp. loads and the highest risk of infection occur during summertime after heavy rainfall. Risk management strategies should focus on problems regarding water scarcity, reuse of sewage effluent and the impact of heavy rain events.


International Journal of Hygiene and Environmental Health | 2008

A comparison of efficiencies of microbiological pollution removal in six sewage treatment plants with different treatment systems

Thomas Kistemann; Esther Rind; Andrea Rechenburg; Christoph Koch; Thomas Claßen; Susanne Herbst; Ina Wienand; Martin Exner

Six sewage treatment plants (STP) were investigated over a 12-month period in order to measure the microbiological load of untreated municipal wastewater and to evaluate the removal efficiencies of different treatment systems. The STP investigated can be classified into three categories: bigger plants with tertiary treatment, smaller plants with enhanced secondary treatment, and very small compact facilities. The plants studied had a considerable quantitative impact on the hydrology of the catchment area; consequently, it was anticipated that the microbiological load of the effluent would also be significant. Eighty samples were taken from the influent and effluent of the STP, regardless of weather conditions, and several bacterial and two parasitological parameters were analysed. The average microbiological reduction of each STP was dependent on its capacity and treatment procedures and varied between 1.9 and 3.5log10. Small compact facilities had a significantly lower removal efficiency (2.0+/-1log10) and discharged treated wastewater with a poorer microbiological quality compared to larger plants with tertiary treatment or with enhanced secondary treatment (2.8log10). Final sand filtration and extensive intermediate settling considerably improved the overall microbiological removal efficiency. During the study period, the microbiological water quality of the receiving water course was not significantly impaired by the discharge of any of the investigated plants; however, the compact facilities showed critical treatment deficiencies. In particular, the reduction of Giardia cysts was insufficient (<1.5log10) compared to that of the bigger plants (>3.0log10). In order to quantify the overall impact of microbiological loads on the receiving watercourse in this catchment area, it is also necessary to assess the pollution from combined sewer overflow basins and diffuse pollution. This will be considered in subsequent studies.


Critical Reviews in Environmental Science and Technology | 2012

Knowledge Mapping for Climate Change and Food- and Waterborne Diseases

Jan C. Semenza; Christoph Höuser; Susanne Herbst; Andrea Rechenburg; Jonathan E. Suk; Tobias Frechen; Thomas Kistemann

The authors extracted from the PubMed and ScienceDirect bibliographic databases all articles published between 1998 and 2009 that were relevant to climate change and food- and waterborne diseases. Any material within each article that provided information about a relevant pathogen and its relationship with climate and climate change was summarized as a key fact, entered into a relational knowledge base, and tagged with the terminology (predefined terms) used in the field. These terms were organized, quantified, and mapped according to predefined hierarchical categories. For noncholera Vibrio sp. and Cryptosporidium sp., data on climatic and environmental influences (52% and 49% of the total number of key facts, respectively) pertained to specific weather phenomena (as opposed to climate change phenomena) and environmental determinants, whereas information on the potential effects of food-related determinants that might be related to climate or climate change were virtually absent. This proportion was lower for the other pathogens studied (Campylobacter sp. 40%, Salmonella sp. 27%, Norovirus 25%, Listeria sp. 8%), but they all displayed a distinct concentration of information on general food- and water-related determinants or effects, albeit with little detail. Almost no information was available concerning the potential effects of changes in climatic variables on the pathogens evaluated, such as changes in air or water temperature, precipitation, humidity, UV radiation, wind, cloud coverage, sunshine hours, or seasonality. Frequency profiles revealed an abundance of data on weather and food-specific determinants, but also exposed extensive data deficiencies, particularly with regard to the potential effects of climate change on the pathogens evaluated. A reprioritization of public health research is warranted to ensure that funding is dedicated to explicitly studying the effects of changes in climate variables on food- and waterborne diseases.


International Journal of Hygiene and Environmental Health | 2012

Effect of sewage treatment plants and diffuse pollution on the occurrence of protozoal parasites in the course of a small river.

Thomas Kistemann; Esther Rind; Christoph Koch; Thomas Claßen; Charis Lengen; Martin Exner; Andrea Rechenburg

In Germany, protozoal parasites are detected frequently in surface waters. This study aims to assess the parasitological pollution in a river course and two of its tributaries under regular weather conditions. Cryptosporidium was detected in 67% of all samples. The median concentration was 4 oocysts/100l. Giardia lamblia were detected in 90% of the samples. The median concentration of G. lamblia was 22 cysts/100l and increased significantly following the river course. A statistically significant correlation was found between both parasites and the faecal indicators Clostridium perfringens and Escherichia coli. The intermittent occurrence of Cryptosporidium in the streams investigated was ascribed primarily to diffuse pollution, particularly during rainfall events. The relatively frequent detection of G. lamblia derived mainly from sewage treatment plants. The pathogen concentrations observed present a relevant public health risk as the river is used for recreational activities and agricultural purposes.


International Journal of Hygiene and Environmental Health | 2009

The emission potential of different land use patterns for the occurrence of coliphages in surface water

Christiane Franke; Andrea Rechenburg; Susanne Baumanns; Marlene Willkomm; Ekkehard Christoffels; Martin Exner; Thomas Kistemann

Different land use patterns were investigated for their potential as non-point sources of coliphage emissions into surface waters. Water samples were taken regularly at five locations in the upper reaches of the river Swist, Germany. Samples of surface and subsurface run-off were taken within the same catchment area after rainfall events using a newly developed device that made it possible to collect current concentrations of the effluent compounds. The water quality was examined for the occurrence of somatic coliphages and F(+)-specific RNA-bacteriophages as well as for various bacteria over the period of a hydrological year. The potential of various bacteria as indicators for the occurrence of phages was evaluated using statistical correlations. The load of coliphages varied depending on the land use type, but it did not differ as much as the bacterial parameters. River sections in intensively used areas turned out to be more contaminated than in less intensively used regions. The concentrations of phages from surface and subsurface run-off in most samples were quite low for all land use types and did not show conspicuous variations of surface and subsurface run-off within one land use type. Therefore, high concentrations of phages in river water cannot be explained only by non-point effluent from open ground. Following consideration of the statistical results, conventional indicator bacteria seem not to be reliable indicator organisms for coliphages and subsequently for human pathogen viruses. The detected concentrations of coliphages in several water samples of river sections surrounded by intensively used areas underpin an existing health risk in the use of river water for e.g. recreational activities or irrigation.


International Journal of Hygiene and Environmental Health | 2015

The impact of land use on microbial surface water pollution.

Christiane Schreiber; Andrea Rechenburg; Esther Rind; Thomas Kistemann

Our knowledge relating to water contamination from point and diffuse sources has increased in recent years and there have been many studies undertaken focusing on effluent from sewage plants or combined sewer overflows. However, there is still only a limited amount of microbial data on non-point sources leading to diffuse pollution of surface waters. In this study, the concentrations of several indicator micro-organisms and pathogens in the upper reaches of a river system were examined over a period of 16 months. In addition to bacteria, diffuse pollution caused by Giardia lamblia and Cryptosporidium spp. was analysed. A single land use type predestined to cause high concentrations of all microbial parameters could not be identified. The influence of different land use types varies between microbial species. The microbial concentration in river water cannot be explained by stable non-point effluent concentrations from different land use types. There is variation in the ranking of the potential of different land use types resulting in surface water contamination with regard to minimum, median and maximum effects. These differences between median and maximum impact indicate that small-scale events like spreading manure substantially influence the general contamination potential of a land use type and may cause increasing micro-organism concentrations in the river water by mobilisation during the next rainfall event.


Environmental Pollution | 2013

Effects of local and spatial conditions on the quality of harvested rainwater in the Mekong Delta, Vietnam.

Gert-Jan Wilbers; Zita Sebesvari; Andrea Rechenburg; Fabrice G. Renaud

The objective of this study was to assess the quality of harvested rainwater in the Mekong Delta (MD), Vietnam for local (roof types, storage system and duration) and spatial (proximity of industry, main roads, coastline) conditions. 78 harvested rainwater samples were collected in the MD and analyzed for pH, turbidity, TDS, COD, nutrients (NH4, NO3, NO2, o-PO4), trace metals and coliforms. The results show that thatch roofs lead to an increase of pollutants like COD (max 23.2 mgl(-1)) and turbidity (max 10.1 mgl(-1)) whereas galvanized roofs lead to an increase of Zn (max 2.2 mgl(-1)). The other local and spatial parameters had no or only minor influence on the quality of household harvested rainwater. However, lead (Pb) (max. 16.9 μgl(-1)) and total coliforms (max. 102 500 CFU100 ml(-1)) were recorded at high concentrations, probably due to a variety of household-specific conditions such as rainwater storage, collection and handling practices.


Journal of Water and Health | 2009

Hygienic effects and gas production of plastic bio-digesters under tropical conditions

Vo Thi Yen-Phi; Joachim Clemens; Andrea Rechenburg; Björn Vinnerås; Christina Lenssen; Thomas Kistemann

Plastic plug-flow bio-digesters have been promoted as a good option for improved treatment of manure and wastewater in developing countries although minimal information has been published on their hygienic status. This bench-scale study replicates bio-digester conditions to evaluate the reduction of pathogen and indicator microorganisms at three different hydraulic retention times (HRT) in the anaerobic treatment of pig manures at 30 degrees C for 50 days. Results showed that physicochemical values differed between HRTs. Gas production efficiency was better for longer HRTS. The accumulated sludge at the reactors base increased with longer HRT. Phages and bacteria examined were reduced, but none was completely eliminated. Log10 reduction of bacteria ranged from 0.54 to 2.47. Phages ranged from 1.60 to 3.42. The reduction of organisms at HRT = 30 days was about one log10 unit higher than HRT = 15 days and about two log10 units higher than HRT = 3 days. The results indicate that the reduction of tested organisms increases with HRT. However the hygienic quality of the liquid effluent does not meet required quality values for surface and irrigation water. Longer HRTs are recommended to increase gas yield and achieve higher pathogen reduction. More barriers should be applied while handling bio-digester outputs to minimise risks to environmental and human health.


Science of The Total Environment | 2016

Mass balance of nitrogen and potassium in urban groundwater in Central Africa, Yaounde/Cameroon

R. Kringel; Andrea Rechenburg; D. Kuitcha; A. Fouépé; S. Bellenberg; I.M. Kengne; M.A. Fomo

Mass flow of nutrients from innumerous latrines and septic tanks was assessed to best describe the groundwater quality situation in the urban environment of Yaounde. 37 groundwater samples were taken at the end of dry season 2012 and analysed for nutrient related (NO3(-), NH4(+), NO2(-), K(+), Cl(-), HPO4(2-) and TOC) and physico-chemical ambient parameters. A survey on waste water discharge close to water points constrained point sources from sanitation. The results showed that the median of nitrate concentration exceeds the WHO limit. We realized that EC increases from the geogenic background to very high levels in the urban area within short distance, suggesting anthropogenic input. Dug wells showed nitrate and ammonium in equivalent concentrations, indicating incomplete nitrification and mandating their inclusion into water type classification. The mass turnover of nutrients in urban groundwater scales high in comparison to national statistical figures on fertilizer import for 2012. A mass N,K balance for infiltration water overestimates observed concentrations by a factor of 4.5. The marked balance gap is attributed to dynamic non-equilibrium between input and output. Unresolved questions like a) urban sanitation, b) hygiene & health and c) environmental protection urgently call for closing the nutrient cycle. In the light of Cameroonian strategies on rural development, tackling the groundwater nutrient, urban agriculture, food--NEXUS might partially restore urban and periurban ecosystem services under economical constraints and thus improve living conditions.

Collaboration


Dive into the Andrea Rechenburg's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Björn Vinnerås

Swedish University of Agricultural Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge