Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andrea Riccio is active.

Publication


Featured researches published by Andrea Riccio.


Molecular Cell | 2011

In embryonic stem cells, ZFP57/KAP1 recognize a methylated hexanucleotide to affect chromatin and DNA methylation of imprinting control regions.

Simon Quenneville; Gaetano Verde; Andrea Corsinotti; Adamandia Kapopoulou; Johan Jakobsson; Sandra Offner; Ilaria Baglivo; Paolo V. Pedone; Giovanna Grimaldi; Andrea Riccio; Didier Trono

Summary The maintenance of H3K9 and DNA methylation at imprinting control regions (ICRs) during early embryogenesis is key to the regulation of imprinted genes. Here, we reveal that ZFP57, its cofactor KAP1, and associated effectors bind selectively to the H3K9me3-bearing, DNA-methylated allele of ICRs in ES cells. KAP1 deletion induces a loss of heterochromatin marks at ICRs, whereas deleting ZFP57 or DNMTs leads to ICR DNA demethylation. Accordingly, we find that ZFP57 and KAP1 associated with DNMTs and hemimethylated DNA-binding NP95. Finally, we identify the methylated TGCCGC hexanucleotide as the motif that is recognized by ZFP57 in all ICRs and in several tens of additional loci, several of which are at least ZFP57-dependently methylated in ES cells. These results significantly advance our understanding of imprinting and suggest a general mechanism for the protection of specific loci against the wave of DNA demethylation that affects the mammalian genome during early embryogenesis.


Nature Genetics | 2004

Microdeletions in the human H19 DMR result in loss of IGF2 imprinting and Beckwith-Wiedemann syndrome.

Angela Sparago; Flavia Cerrato; Maria Vernucci; Giovanni Battista Ferrero; Margherita Silengo; Andrea Riccio

The overgrowth- and tumor-associated Beckwith-Wiedemann syndrome results from dysregulation of imprinted genes on chromosome 11p15.5. Here we show that inherited microdeletions in the H19 differentially methylated region (DMR) that abolish two CTCF target sites cause this disease. Maternal transmission of the deletions results in hypermethylation of the H19 DMR, biallelic IGF2 expression, H19 silencing and Beckwith-Wiedemann syndrome, indicative of loss of function of the IGF2-H19 imprinting control element.


European Journal of Human Genetics | 2005

Molecular subtypes and phenotypic expression of Beckwith-Wiedemann syndrome

Wendy N. Cooper; Anita Luharia; Gail A Evans; Hussain Raza; Antonita C Haire; Richard Grundy; Sarah Bowdin; Andrea Riccio; Gianfranco Sebastio; Jet Bliek; Paul N. Schofield; Wolf Reik; Fiona Macdonald; Eamonn R. Maher

Beckwith–Wiedemann Syndrome (BWS) results from mutations or epigenetic events involving imprinted genes at 11p15.5. Most BWS cases are sporadic and uniparental disomy (UPD) or putative imprinting errors predominate in this group. Sporadic cases with putative imprinting defects may be subdivided into (a) those with loss of imprinting (LOI) of IGF2 and H19 hypermethylation and silencing due to a defect in a distal 11p15.5 imprinting control element (IC1) and (b) those with loss of methylation at KvDMR1, LOI of KCNQ1OT1 (LIT1) and variable LOI of IGF2 in whom there is a defect at a more proximal imprinting control element (IC2). We investigated genotype/epigenotype–phenotype correlations in 200 cases with a confirmed molecular genetic diagnosis of BWS (16 with CDKN1C mutations, 116 with imprinting centre 2 defects, 14 with imprinting centre 1 defects and 54 with UPD). Hemihypertrophy was strongly associated with UPD (P<0.0001) and exomphalos was associated with an IC2 defect or CDKN1C mutation but not UPD or IC1 defect (P<0.0001). When comparing birth weight centile, IC1 defect cases were significantly heavier than the patients with CDKN1C mutations or IC2 defect (P=0.018). The risk of neoplasia was significantly higher in UPD and IC1 defect cases than in IC2 defect and CDKN1C mutation cases. Kaplan–Meier analysis revealed a risk of neoplasia for all patients of 9% at age 5 years, but 24% in the UPD subgroup. The risk of Wilms’ tumour in the IC2 defect subgroup appears to be minimal and intensive screening for Wilms’ tumour appears not to be indicated. In UPD patients, UPD extending to WT1 was associated with renal neoplasia (P=0.054). These findings demonstrate that BWS represents a spectrum of disorders. Identification of the molecular subtype allows more accurate prognostic predictions and enhances the management and surveillance of BWS children such that screening for Wilms’ tumour and hepatoblastoma can be focused on those at highest risk.


European Journal of Human Genetics | 2009

Hypomethylation at multiple maternally methylated imprinted regions including PLAGL1 and GNAS loci in Beckwith–Wiedemann syndrome

Jet Bliek; Gaetano Verde; Jonathan L. A. Callaway; Saskia M. Maas; Agostina De Crescenzo; Angela Sparago; Flavia Cerrato; Silvia Russo; Serena Ferraiuolo; Maria Michela Rinaldi; Rita Fischetto; Faustina Lalatta; Lucio Giordano; Paola Ferrari; Maria Vittoria Cubellis; Lidia Larizza; I. Karen Temple; Marcel Mannens; Deborah J.G. Mackay; Andrea Riccio

Genomic imprinting is an epigenetic phenomenon restricting gene expression in a manner dependent on parent of origin. Imprinted gene products are critical regulators of growth and development, and imprinting disorders are associated with both genetic and epigenetic mutations, including disruption of DNA methylation within the imprinting control regions (ICRs) of these genes. It was recently reported that some patients with imprinting disorders have a more generalised imprinting defect, with hypomethylation at a range of maternally methylated ICRs. We report a cohort of 149 patients with a clinical diagnosis of Beckwith–Wiedemann syndrome (BWS), including 81 with maternal hypomethylation of the KCNQ1OT1 ICR. Methylation analysis of 11 ICRs in these patients showed that hypomethylation affecting multiple imprinted loci was restricted to 17 patients with hypomethylation of the KCNQ1OT1 ICR, and involved only maternally methylated loci. Both partial and complete hypomethylation was demonstrated in these cases, suggesting a possible postzygotic origin of a mosaic imprinting error. Some ICRs, including the PLAGL1 and GNAS/NESPAS ICRs implicated in the aetiology of transient neonatal diabetes and pseudohypoparathyroidism type 1b, respectively, were more frequently affected than others. Although we did not find any evidence for mutation of the candidate gene DNMT3L, these results support the hypotheses that trans-acting factors affect the somatic maintenance of imprinting at multiple maternally methylated loci and that the clinical presentation of these complex cases may reflect the loci and tissues affected with the epigenetic abnormalities.


DNA Research | 2013

The control region of mitochondrial DNA shows an unusual CpG and non-CpG methylation pattern.

Dina Bellizzi; Patrizia D'Aquila; Teresa Scafone; Marco Giordano; Vincenzo Riso; Andrea Riccio; Giuseppe Passarino

DNA methylation is a common epigenetic modification of the mammalian genome. Conflicting data regarding the possible presence of methylated cytosines within mitochondrial DNA (mtDNA) have been reported. To clarify this point, we analysed the methylation status of mtDNA control region (D-loop) on human and murine DNA samples from blood and cultured cells by bisulphite sequencing and methylated/hydroxymethylated DNA immunoprecipitation assays. We found methylated and hydroxymethylated cytosines in the L-strand of all samples analysed. MtDNA methylation particularly occurs within non-C-phosphate-G (non-CpG) nucleotides, mainly in the promoter region of the heavy strand and in conserved sequence blocks, suggesting its involvement in regulating mtDNA replication and/or transcription. We observed DNA methyltransferases within the mitochondria, but the inactivation of Dnmt1, Dnmt3a, and Dnmt3b in mouse embryonic stem (ES) cells results in a reduction of the CpG methylation, while the non-CpG methylation shows to be not affected. This suggests that D-loop epigenetic modification is only partially established by these enzymes. Our data show that DNA methylation occurs in the mtDNA control region of mammals, not only at symmetrical CpG dinucleotides, typical of nuclear genome, but in a peculiar non-CpG pattern previously reported for plants and fungi. The molecular mechanisms responsible for this pattern remain an open question.


PLOS ONE | 2008

Distinct methylation changes at the IGF2-H19 locus in congenital growth disorders and cancer.

Adele Murrell; Yoko Ito; Gaetano Verde; Joanna E. Huddleston; Kathryn Woodfine; Margherita Silengo; Filippo Spreafico; Daniela Perotti; Agostina De Crescenzo; Angela Sparago; Flavia Cerrato; Andrea Riccio

Background Differentially methylated regions (DMRs) are associated with many imprinted genes. In mice methylation at a DMR upstream of the H19 gene known as the Imprint Control region (IC1) is acquired in the male germline and influences the methylation status of DMRs 100 kb away in the adjacent Insulin-like growth factor 2 (Igf2) gene through long-range interactions. In humans, germline-derived or post-zygotically acquired imprinting defects at IC1 are associated with aberrant activation or repression of IGF2, resulting in the congenital growth disorders Beckwith-Wiedemann (BWS) and Silver-Russell (SRS) syndromes, respectively. In Wilms tumour and colorectal cancer, biallelic expression of IGF2 has been observed in association with loss of methylation at a DMR in IGF2. This DMR, known as DMR0, has been shown to be methylated on the silent maternal IGF2 allele presumably with a role in repression. The effect of IGF2 DMR0 methylation changes in the aetiology of BWS or SRS is unknown. Methodology/Principal Findings We analysed the methylation status of the DMR0 in BWS, SRS and Wilms tumour patients by conventional bisulphite sequencing and pyrosequencing. We show here that, contrary to previous reports, the IGF2 DMR0 is actually methylated on the active paternal allele in peripheral blood and kidney. This is similar to the IC1 methylation status and is inconsistent with the proposed silencing function of the maternal IGF2 allele. Beckwith-Wiedemann and Silver-Russell patients with IC1 methylation defects have similar methylation defects at the IGF2 DMR0, consistent with IC1 regulating methylation at IGF2 in cis. In Wilms tumour, however, methylation profiles of IC1 and IGF2 DMR0 are indicative of methylation changes occurring on both parental alleles rather than in cis. Conclusions/Significance These results support a model in which DMR0 and IC1 have opposite susceptibilities to global hyper and hypomethylation during tumorigenesis independent of the parent of origin imprint. In contrast, during embryogenesis DMR0 is methylated or demethylated according to the germline methylation imprint at the IC1, indicating different mechanisms of imprinting loss in neoplastic and non-neoplastic cells.


Human Molecular Genetics | 2012

The KCNQ1OT1 Imprinting Control Region and non-coding RNA: new properties derived from the study of Beckwith-Wiedemann syndrome and Silver-Russell syndrome cases

Nicoletta Chiesa; Agostina De Crescenzo; Kankadeb Mishra; Lucia Perone; Massimo Carella; Orazio Palumbo; Alessandro Mussa; Angela Sparago; Flavia Cerrato; Silvia Russo; Elisabetta Lapi; Maria Vittoria Cubellis; Chandrasekhar Kanduri; Margherita Silengo; Andrea Riccio; Giovanni Battista Ferrero

A cluster of imprinted genes at chromosome 11p15.5 is associated with the growth disorders, Silver–Russell syndrome (SRS) and Beckwith–Wiedemann syndrome (BWS). The cluster is divided into two domains with independent imprinting control regions (ICRs). We describe two maternal 11p15.5 microduplications with contrasting phenotypes. The first is an inverted and in cis duplication of the entire 11p15.5 cluster associated with the maintenance of genomic imprinting and with the SRS phenotype. The second is a 160 kb duplication also inverted and in cis, but resulting in the imprinting alteration of the centromeric domain. It includes the centromeric ICR (ICR2) and the most 5′ 20 kb of the non-coding KCNQ1OT1 gene. Its maternal transmission is associated with ICR2 hypomethylation and the BWS phenotype. By excluding epigenetic mosaicism, cell clones analysis indicated that the two closely located ICR2 sequences resulting from the 160 kb duplication carried discordant DNA methylation on the maternal chromosome and supported the hypothesis that the ICR2 sequence is not sufficient for establishing imprinted methylation and some other property, possibly orientation-dependent, is needed. Furthermore, the 1.2 Mb duplication demonstrated that all features are present for correct imprinting at ICR2 when this is duplicated and inverted within the entire cluster. In the individuals maternally inheriting the 160 kb duplication, ICR2 hypomethylation led to the expression of a truncated KCNQ1OT1 transcript and to down-regulation of CDKN1C. We demonstrated by chromatin RNA immunopurification that the KCNQ1OT1 RNA interacts with chromatin through its most 5′ 20 kb sequence, providing a mechanism likely mediating the silencing activity of this long non-coding RNA.


FEBS Letters | 1999

Role of histone acetylation and DNA methylation in the maintenance of the imprinted expression of the H19 and Igf2 genes.

Paolo V. Pedone; Michael J. Pikaart; Flavia Cerrato; Maria Vernucci; Paola Ungaro; Carmelo B. Bruni; Andrea Riccio

H19 and Igf2 are linked and reciprocally imprinted genes. We demonstrate that the histones associated with the paternally inherited and unexpressed H19 allele are less acetylated than those associated with the maternal expressed allele. Cell growth in the presence of inhibitors of either histone deacetylase or DNA methylation activated the silent Igf2 allele, whereas derepression of the silent HI9 allele required combined inhibition of DNA methylation and histone deacetylation. Our results indicate that histone acetylation as well as DNA methylation contribute to the somatic maintenance of H19 and Igf2 imprinting and that silencing of the imprinted alleles of these two genes is maintained via distinct mechanisms.


Human Molecular Genetics | 2011

Disruption of genomic neighbourhood at the imprinted IGF2-H19 locus in Beckwith–Wiedemann syndrome and Silver–Russell syndrome

Raffaella Nativio; Angela Sparago; Yoko Ito; Rosanna Weksberg; Andrea Riccio; Adele Murrell

Hyper- and hypomethylation at the IGF2-H19 imprinting control region (ICR) result in reciprocal changes in IGF2-H19 expression and the two contrasting growth disorders, Beckwith–Wiedemann syndrome (BWS) and Silver–Russell syndrome (SRS). DNA methylation of the ICR controls the reciprocal imprinting of IGF2 and H19 by preventing the binding of the insulator protein, CTCF. We here show that local changes in histone modifications and CTCF–cohesin binding at the ICR in BWS and SRS together with DNA methylation correlate with the higher order chromatin structure at the locus. In lymphoblastoid cells from control individuals, we found the repressive histone H3K9me3 and H4K20me3 marks associated with the methylated paternal ICR allele and the bivalent H3K4me2/H3K27me3 mark together with H3K9ac and CTCF–cohesin associated with the non-methylated maternal allele. In patient-derived cell lines, the mat/pat asymmetric distribution of these epigenetic marks was lost with H3K9me3 and H4K20me3 becoming biallelic in the BWS and H3K4me2, H3K27me3 and H3K9ac together with CTCF–cohesin becoming biallelic in the SRS. We further show that in BWS and SRS cells, there is opposing chromatin looping conformation mediated by CTCF–cohesin binding sites surrounding the locus. In normal cells, lack of CTCF–cohesin binding at the paternal ICR is associated with monoallelic interaction between two CTCF sites flanking the locus. CTCF–cohesin binding at the maternal ICR blocks this interaction by associating with the CTCF site downstream of the enhancers. The two alternative chromatin conformations are differently favoured in BWS and SRS likely predisposing the locus to the activation of IGF2 or H19, respectively.


Human Molecular Genetics | 2013

The molecular function and clinical phenotype of partial deletions of the IGF2/H19 imprinting control region depends on the spatial arrangement of the remaining CTCF-binding sites

Jasmin Beygo; Valentina Citro; Angela Sparago; Agostina De Crescenzo; Flavia Cerrato; Melanie Heitmann; Katrin Rademacher; Andrea Guala; Thorsten Enklaar; Cecilia Anichini; Margherita Cirillo Silengo; Notker Graf; Dirk Prawitt; Maria Vittoria Cubellis; Bernhard Horsthemke; Karin Buiting; Andrea Riccio

At chromosome 11p15.5, the imprinting centre 1 (IC1) controls the parent of origin-specific expression of the IGF2 and H19 genes. The 5 kb IC1 region contains multiple target sites (CTS) for the zinc-finger protein CTCF, whose binding on the maternal chromosome prevents the activation of IGF2 and allows that of H19 by common enhancers. CTCF binding helps maintaining the maternal IC1 methylation-free, whereas on the paternal chromosome gamete-inherited DNA methylation inhibits CTCF interaction and enhancer-blocking activity resulting in IGF2 activation and H19 silencing. Maternally inherited 1.4–2.2 kb deletions are associated with methylation of the residual CTSs and Beckwith–Wiedemann syndrome, although with different penetrance and expressivity. We explored the relationship between IC1 microdeletions and phenotype by analysing a number of previously described and novel mutant alleles. We used a highly quantitative assay based on next generation sequencing to measure DNA methylation in affected families and analysed enhancer-blocking activity and CTCF binding in cultured cells. We demonstrate that the microdeletions mostly affect IC1 function and CTCF binding by changing CTS spacing. Thus, the extent of IC1 inactivation and the clinical phenotype are influenced by the arrangement of the residual CTSs. A CTS spacing similar to the wild-type allele results in moderate IC1 inactivation and is associated with stochastic DNA methylation of the maternal IC1 and incomplete penetrance. Microdeletions with different CTS spacing display severe IC1 inactivation and are associated with IC1 hypermethylation and complete penetrance. Careful characterization of the IC1 microdeletions is therefore needed to predict recurrence risks and phenotypical outcomes.

Collaboration


Dive into the Andrea Riccio's collaboration.

Top Co-Authors

Avatar

Flavia Cerrato

Seconda Università degli Studi di Napoli

View shared research outputs
Top Co-Authors

Avatar

Angela Sparago

Seconda Università degli Studi di Napoli

View shared research outputs
Top Co-Authors

Avatar

Agostina De Crescenzo

Seconda Università degli Studi di Napoli

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Silvia Russo

Laboratory of Molecular Biology

View shared research outputs
Top Co-Authors

Avatar

Carmelo B. Bruni

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Paolo V. Pedone

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Maria Vittoria Cubellis

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge