Andrea Rubini
National Research Council
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Andrea Rubini.
Nature | 2010
Francis L. Martin; Annegret Kohler; Claude Murat; Raffaella Balestrini; Pedro M. Coutinho; Olivier Jaillon; Barbara Montanini; Emmanuelle Morin; Benjamin Noel; Riccardo Percudani; Bettina Porcel; Andrea Rubini; Antonella Amicucci; Joelle Amselem; Véronique Anthouard; Sergio Arcioni; François Artiguenave; Jean-Marc Aury; Paola Ballario; Angelo Bolchi; Andrea Brenna; Annick Brun; Marc Buee; Brandi Cantarel; Gérard Chevalier; Arnaud Couloux; Corinne Da Silva; Sébastien Duplessis; Stefano Ghignone; Benoı̂t Hilselberger
The Périgord black truffle (Tuber melanosporum Vittad.) and the Piedmont white truffle dominate today’s truffle market. The hypogeous fruiting body of T. melanosporum is a gastronomic delicacy produced by an ectomycorrhizal symbiont endemic to calcareous soils in southern Europe. The worldwide demand for this truffle has fuelled intense efforts at cultivation. Identification of processes that condition and trigger fruit body and symbiosis formation, ultimately leading to efficient crop production, will be facilitated by a thorough analysis of truffle genomic traits. In the ectomycorrhizal Laccaria bicolor, the expansion of gene families may have acted as a ‘symbiosis toolbox’. This feature may however reflect evolution of this particular taxon and not a general trait shared by all ectomycorrhizal species. To get a better understanding of the biology and evolution of the ectomycorrhizal symbiosis, we report here the sequence of the haploid genome of T. melanosporum, which at ∼125 megabases is the largest and most complex fungal genome sequenced so far. This expansion results from a proliferation of transposable elements accounting for ∼58% of the genome. In contrast, this genome only contains ∼7,500 protein-coding genes with very rare multigene families. It lacks large sets of carbohydrate cleaving enzymes, but a few of them involved in degradation of plant cell walls are induced in symbiotic tissues. The latter feature and the upregulation of genes encoding for lipases and multicopper oxidases suggest that T. melanosporum degrades its host cell walls during colonization. Symbiosis induces an increased expression of carbohydrate and amino acid transporters in both L. bicolor and T. melanosporum, but the comparison of genomic traits in the two ectomycorrhizal fungi showed that genetic predispositions for symbiosis—‘the symbiosis toolbox’—evolved along different ways in ascomycetes and basidiomycetes.
Applied and Environmental Microbiology | 2006
Francesco Paolocci; Andrea Rubini; Claudia Riccioni; Sergio Arcioni
ABSTRACT Tuber spp. are ectomycorrhizal ascomycetes that produce ascocarps known as truffles. Basic aspects of Tuber biology have yet to be fully elucidated. In particular, there are conflicting hypotheses concerning the mating system and the ploidy level of the mycorrhizal and truffle hyphae. We used polymorphic microsatellites to compare the allelic configurations of asci with those from the network of the surrounding hyphae in single Tuber magnatum truffles. We then used these truffles to inoculate host plants and evaluated the microsatellite configurations of the resulting mycorrhizal root tips. These analyses provide direct evidence that T. magnatum outcrosses and that its life cycle is predominantly haploid. In addition to its scientific significance, this basic understanding of the T. magnatum life cycle may have practical importance in developing strategies to obtain and select nursery-produced mycorrhizal plants as well as in the management of artificial plantations of this and other Tuber spp.
New Phytologist | 2011
Andrea Rubini; Beatrice Belfiori; Claudia Riccioni; Emilie Tisserant; Sergio Arcioni; Francis L. Martin; Francesco Paolocci
• The genome of Tuber melanosporum has recently been sequenced. Here, we used this information to identify genes involved in the reproductive processes of this edible fungus. The sequenced strain (Mel28) possesses only one of the two master genes required for mating, that is, the gene that codes for the high mobility group (HMG) transcription factor (MAT1-2-1), whereas it lacks the gene that codes for the protein containing the α-box- domain (MAT1-1-1), suggesting that this fungus is heterothallic. • A PCR-based approach was initially employed to screen truffles for the presence of the MAT1-2-1 gene and amplify the conserved regions flanking the mating type (MAT) locus. The MAT1-1-1 gene was finally identified using primers designed from the conserved regions of strains that lack the MAT1-2-1 gene. • Mating type-specific primer pairs were developed to screen asci and gleba from truffles of different origins and to genotype single ascospores within the asci. These analyses provided definitive evidence that T. melanosporum is a heterothallic species with a MAT locus that is organized similarly to those of ancient fungal lineages. • A greater understanding of the reproductive mechanisms that exist in Tuber spp. allows for optimization of truffle plantation management strategies.
New Phytologist | 2008
Claudia Riccioni; Beatrice Belfiori; Andrea Rubini; Valentina Passeri; Sergio Arcioni; Francesco Paolocci
Tuber melanosporum is an ectomycorrhizal ascomycete producing edible ascocarps. The prevalent view is that this species strictly selfs, since genetic analyses have never detected heterozygotic profiles in its putatively diploid/dikaryotic gleba. The selfing model has also forged the experimental approaches to assess the population genetic variability. Here, the hypothesis that T. melanosporum outcrosses was tested. To this end, SSR (simple sequence repeats) and ITS (internal transcribed spacer) markers were employed to fingerprint asci and the surrounding gleba within single ascocarps. The distribution of genetic variability was also investigated at different geographical levels using single (SSR and ITS) and multilocus (AFLP, amplified fragment length polymorphism) markers. It is shown that T. melanosporum outcrosses since asci display additional alleles besides those present in the surrounding, uniparental, gleba. Furthermore, SSR and AFLP data reveal a high rate of intrapopulation diversity within samples from the same ground and root apparatus and the highest rate of genetic variability within the southernmost populations of the distributional range. These data call for a profound re-examination of T. melanosporum mating system, life cycle and strategies for managing man-made plantations. They also strongly support the idea that the last glaciation restricted the species distribution to the Italian and Spanish peninsulas.
New Phytologist | 2011
Andrea Rubini; Beatrice Belfiori; Claudia Riccioni; Sergio Arcioni; Francis L. Martin; Francesco Paolocci
• In light of the recent finding that Tuber melanosporum, the ectomycorrhizal ascomycete that produces the most highly prized black truffles, is a heterothallic species, we monitored the spatial distribution of strains with opposite mating types (MAT) in a natural truffle ground and followed strain dynamics in artificially inoculated host plants grown under controlled conditions. • In a natural truffle ground, ectomycorrhizas (ECMs), soil samples and fruit bodies were sampled and genotyped to determine mating types. Simple sequence repeat (SSR) markers were also used to fingerprint ECMs and fruit bodies. The ECMs from nursery-inoculated host plants were analysed for mating type at 6 months and 19 months post-inoculation. • In open-field conditions, all ECMs from the same sampling site showed an identical mating type and an identical haploid genotype, based on SSR analysis. Interestingly, the gleba of fruit bodies always demonstrated the same genotype as the surrounding ECMs. Although root tips from nursery-grown plants initially developed ECMs of both mating types, a dominance of ECMs of the same MAT were found after several months. • The present study deepens our understanding of the vegetative and sexual propagation modes of T. melanosporum. These results are highly relevant for truffle cultivation.
New Phytologist | 2013
Claude Murat; Andrea Rubini; Claudia Riccioni; Herminia De la Varga; Emila Akroume; Beatrice Belfiori; Marco Guaragno; François Le Tacon; Christophe Robin; Fabien Halkett; Francis Martin; Francesco Paolocci
The genetic structure of ectomycorrhizal (ECM) fungal populations results from both vegetative and sexual propagation. In this study, we have analysed the spatial genetic structure of Tuber melanosporum populations, a heterothallic ascomycete that produces edible fruit bodies. Ectomycorrhizas from oaks and hazels from two orchards were mapped and genotyped using simple sequence repeat markers and the mating type locus. The distribution of the two T. melanosporum mating types was also monitored in the soil. In one orchard, the genetic profiles of the ascocarps were compared with those of the underlying mycorrhizas. A pronounced spatial genetic structure was found. The maximum genet sizes were 2.35 and 4.70 m in the two orchards, with most manifesting a size < 1 m. Few genets persisted throughout two seasons. A nonrandom distribution pattern of the T. melanosporum was observed, resulting in field patches colonized by genets that shared the same mating types. Our findings suggest that competition occurs between genets and provide basic information on T. melanosporum propagation patterns that are relevant for the management of productive truffle orchards.
Fungal Genetics and Biology | 2011
Claude Murat; Claudia Riccioni; Beatrice Belfiori; N Cichocki; Jessy Labbé; Emmanuelle Morin; Emilie Tisserant; Francesco Paolocci; Andrea Rubini; Francis L. Martin
The level of genetic diversity and genetic structure in the Perigord black truffle (Tuber melanosporum Vittad.) has been debated for several years, mainly due to the lack of appropriate genetic markers. Microsatellites or simple sequence repeats (SSRs) are important for the genome organisation, phenotypic diversity and are one of the most popular molecular markers. In this study, we surveyed the T. melanosporum genome (1) to characterise its SSR pattern; (2) to compare it with SSR patterns found in 48 other fungal and three oomycetes genomes and (3) to identify new polymorphic SSR markers for population genetics. The T. melanosporum genome is rich in SSRs with 22,425 SSRs with mono-nucleotides being the most frequent motifs. SSRs were found in all genomic regions although they are more frequent in non-coding regions (introns and intergenic regions). Sixty out of 135 PCR-amplified mono-, di-, tri-, tetra, penta, and hexa-nucleotides were polymorphic (44%) within black truffle populations and 27 were randomly selected and analysed on 139 T. melanosporum isolates from France, Italy and Spain. The number of alleles varied from 2 to 18 and the expected heterozygosity from 0.124 to 0.815. One hundred and thirty-two different multilocus genotypes out of the 139 T. melanosporum isolates were identified and the genotypic diversity was high (0.999). Polymorphic SSRs were found in UTR regulatory regions of fruiting bodies and ectomycorrhiza regulated genes, suggesting that they may play a role in phenotypic variation. In conclusion, SSRs developed in this study were highly polymorphic and our results showed that T. melanosporum is a species with an important genetic diversity, which is in agreement with its recently uncovered heterothallic mating system.
Journal of Experimental Botany | 2011
Francesco Paolocci; Mark P. Robbins; Valentina Passeri; Barbara Hauck; Phil Morris; Andrea Rubini; Sergio Arcioni; Francesco Damiani
Proanthocyanidins (PAs) are agronomically important biopolymers in higher plants composed primarily of catechin and epicatechin units. The biosynthesis of these natural products is regulated by transcription factors including proteins of the R2R3MYB class. To gain insight into the genetic control of the catechin and epicatechin branches of the PA pathway in forage legumes, here the effects of the expression of FaMYB1, a flavonoid R2R3MYB repressor from strawberry, in Lotus corniculatus (birdsfoot trefoil), were tested. It was found that in leaves of T(0) transgenic lines the degree of PA inhibition correlated with the level of FaMYB1 expression. These effects were heritable in the transgene-positive plant T(1) generation and were tissue specific as the suppression of proanthocyanidin biosynthesis was most pronounced in mesophyll cells within the leaf, whereas other flavonoid and phenolic compounds were substantially unaltered. The data suggest that FaMYB1 may counter-balance the activity of the endogenous transcriptional MYB-bHLH-WD40 (MBW) complex promoting proanthocyanidin biosynthesis via the catechin and epicatechin branches and that FaMYB1 does not interfere with the expression levels of a resident R2R3MYB activator of PAs. It is proposed that in forage legumes leaf cell commitment to synthesize proanthocyanidins relies on the balance between the activity of activator and repressor MYBs operating within the MBW complex.
Mycorrhiza | 2006
Leonardo Baciarelli-Falini; Andrea Rubini; Claudia Riccioni; Francesco Paolocci
Below-ground ectomycorrhizal communities are often species-rich, and monitoring their dynamics is important to understand the conditions that promote truffle fructification. Characterization of the different ectomycorrhizas (ECM) at the species level can now be achieved by combining detailed morphological and anatomical descriptions with molecular approaches. Following this strategy, we have characterized ectomycorrhizal biodiversity in an artificial Tuber melanosporum plantation. Although the plantation was unproductive, T. melanosporum mycorrhizas were the most present and two Tuber-like mycorrhizal morphotypes, named ECMm1 and ECMm3, showing distinctive features were found. Internal transcribed spacer (ITS) phylogenetic analysis demonstrated that ECMm3 is related to the Tuber rufum/Tuber ferrugineum species complex, whereas ECMm1 shows the highest ITS similarity with Tuber scruposum and fungi-colonizing Epipactis roots. The results presented here provide more insights into genetic variability, mycorrhizal morphology, and below-ground distribution of fungi associated with artificial truffle plantations.
Fems Microbiology Letters | 2004
Francesco Paolocci; Andrea Rubini; Claudia Riccioni; Fabiana Topini; Sergio Arcioni
Tuber spp. are ectomycorrhizal fungi that establish symbioses with shrubs and trees. Because of their different smell and taste, Tuber uncinatum and Tuber aestivum are two truffle morphotypes with a different market value, but whether or not T. uncinatum and T. aestivum are different taxa is still an open debate among mycologists. In order to identify molecular keys characterizing both T. aestivum and T. uncinatum morphotypes, ITS/RFLPs analyses were carried out on a large collection of samples from all over Italy and from other European countries, followed by a study of the phylogenesis of ITS, beta-tubulin and EF 1-alpha genes, on representative samples. The present study provides compelling evidence that: (i) T. uncinatum and T. aestivum belong to the same species, (ii) neither morphotype presents a specific molecular fingerprint, but they may even share identical alleles at any of the loci analysed; (iii) T. aestivum is most likely under a selfing reproductive mode. Our findings suggest that ecological, rather than genetic causes may account for differences in sporal morphology, taste and smell between T. aestivum and T. uncinatum truffles.