Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andrea Rustichelli is active.

Publication


Featured researches published by Andrea Rustichelli.


Journal of Maps | 2016

Stratigraphic framework of the late Miocene to Pliocene Pisco Formation at Cerro Colorado (Ica Desert, Peru)

C. Di Celma; Elisa Malinverno; Karen Gariboldi; Anna Gioncada; Andrea Rustichelli; Pietro Paolo Pierantoni; Walter Landini; Giulia Bosio; Chiara Tinelli; Giovanni Bianucci

This paper describes a ∼200 m-thick section of the Pisco Formation exposed at Cerro Colorado, an important fossiliferous site in the Ica desert. In order to properly place the fauna in its correct relative position, this study establishes the stratigraphic framework within which the different fossil-bearing intervals of this site can be compared and may prove invaluable in future high-resolution studies on the faunal change. Most of the Pisco Formation deposits exposed at Cerro Colorado consist of gently dipping fine-grained sandstones, diatomaceous siltstones and diatomites with minor ash layers and dolomites deposited within nearshore and offshore settings. To facilitate detailed stratigraphic correlations within the Pisco strata for a 30 km2 area, eight marker beds have been defined and large-scale (1:10,000 scale) geological mapping conducted to determine fault positions, styles and offsets. The geological map shows that there are two important angular unconformities in the study area. The first one is the interformational basal unconformity of the Pisco Formation against folded, faulted, and planated Oligo-Miocene rocks of the Chilcatay Formation. The second is a low-angle intraformational erosional discontinuity of up to 4° angular discordance that allows the subdivision of the Pisco stratigraphy exposed in the study area into two informal allomembers. Dating of the exposed succession by diatom biostratigraphy suggests that the age of the lower allomember is late Miocene, whereas the upper allomember is late Miocene or younger.


Journal of Maps | 2016

Stratigraphic framework of the late Miocene Pisco Formation at Cerro Los Quesos (Ica Desert, Peru)

C. Di Celma; Elisa Malinverno; Gino Cantalamessa; Anna Gioncada; Giulia Bosio; Igor M. Villa; Karen Gariboldi; Andrea Rustichelli; Pietro Paolo Pierantoni; Walter Landini; Chiara Tinelli; Alberto Collareta; Giovanni Bianucci

The enormous concentration of marine vertebrates documented within the Pisco Formation is unique for Peru and South America and places this unit among the prime fossil Lagerstätten for Miocene to Pliocene marine mammals worldwide. In order to provide a robust stratigraphic framework for the fossil-bearing locality of Cerro Los Quesos, this study presents a 1:10,000 scale geological map covering an area of about 21 km2, a detailed measured section spanning 290 m of strata, and a refined chronostratigraphy for the studied succession well constrained by diatom biostratigraphy and high-resolution 40Ar/39Ar isotopic dating of three interbedded ash layers. Within the apparently monotonous, diatomite-dominated sedimentary section, the Pisco Formation has been subdivided into six local members, with stratigraphic control over the different outcrops facilitated by the establishment of a detailed marker bed stratigraphy based on 15 readily distinguishable sediment layers of different nature.


AAPG Bulletin | 2013

Sedimentologic and diagenetic controls on pore-network characteristics of Oligocene–Miocene ramp carbonates (Majella Mountain, central Italy)

Andrea Rustichelli; Emanuele Tondi; Fabrizio Agosta; Claudio Di Celma; M. Giorgioni

This article addresses the controls exerted by sedimentologic and diagenetic factors on the preservation and modification of pore-network characteristics (porosity, pore types, sizes, shapes, and distribution) of carbonates belonging to the Bolognano Formation. This formation, exposed at the Majella Mountain, Italy, is composed of Oligocene–Miocene carbonates deposited in middle- to outer-ramp settings. The carbonates consist of (1) grainstones predominantly composed of either larger benthic foraminifera, especially Lepidocyclina, or bryozoans; (2) grainstones to packstones with abundant echinoid plates and spines; and (3) marly wackestones to mudstones with planktonic foraminifera. The results of this field- and laboratory-based study are consistent with skeletal grain assemblages, grain sizes, sorting, and shapes, all representing the sedimentologic factors responsible for high values of connected primary macroporosity in grainstones deposited on the high-energy, middle to proximal outer ramp. Cementation, responsible for porosity reduction and overall macropore shape and distribution in grainstones to packstones deposited on the intermediate outer ramp, was mainly dependent on the following factors: (1) amount of echinoid plates and spines, (2) grain size, (3) grain sorting and shapes, and (4) clay amount. Differently, in the wackestones to mudstones, laid down on the low-energy, distal outer ramp, matrix is the key sedimentologic factor responsible for low values of scattered macroporosity and dominance of microporosity. The aforementioned results may be useful to improve the prediction of reservoir quality by means of mapping, simulating, and assessing individual carbonate facies with peculiar pore-network characteristics.


Bollettino Della Societa Geologica Italiana | 2016

Hydraulic properties of fault zones in porous carbonates, examples from central and southern Italy

Emanuele Tondi; Andrea Rustichelli; Antonino Cilona; Fabrizio Balsamo; Fabrizio Storti; Giuseppe Napoli; Fabrizio Agosta; Pietro Renda; M. Giorgioni

We present the results of in situ permeability measurements performed, using a portable field permeameter, on normal and strikeslip fault zones that crosscut high-porosity carbonate grainstones. The measurement sites expose in the Cretaceous Orfento Formation of the Majella Mountain (Abruzzo, Italy), and the Lower Pleistocene deposits of the Favignana Island (Sicily, Italy). Nine small-displacement, compactive shear banding-based fault zones have been tested in the field. The fault offset ranges between 10 and 200 centimeters. The acquired permeability data indicate a two orders of magnitude decrease of porosity and permeability from the host rock to the cataclastic fault cores. A clear dependence of the fluid circulation paths through porous carbonates is therefore inferred at depth due to orientation, density and connectivity of the fault zones. Moreover, this study indicates the key role played by the pore network characteristics (pore dimensions above all) of undeformed host rocks on determining extremely different permeability values of the faulted porous carbonate grainstones. Accordingly, the results presented in this study may be helpful in applications such as geofluids management for improving the forecasting of carbonate reservoir quality and understanding the extent of reservoir compartmentalization.


Bollettino Della Societa Geologica Italiana | 2015

Bedding-parallel stylolites in shallow-water limestone successions of the Apulian Carbonate Platform (central-southern Italy)

Andrea Rustichelli; Emanuele Tondi; Irina Korneva; Patrick Baud; S. Vinciguerra; Fabrizio Agosta; Thierry Reuschlé; Jean-Michel Janiseck

Bedding-parallel stylolites typically represent the product of chemical compaction (overburden weight-induced pressure solution) experienced by carbonate successions during their burial history, when bedding is still horizontal. Due to their common occurrence in carbonate rocks, with lateral extents that can exceed 1 km, bedding-parallel stylolites are of special interest for the hydrocarbon industry because they may affect the regional fluid flow in the subsurface. Aimed at assessing the development and distribution of bedding-parallel stylolites in shallow-water, platform limestone successions, field and laboratory studies were carried out on Cretaceous limestones originally pertaining to the Apulian Carbonate Platform realm and now exposed in three distinct Italian locations: Maiella Mountain, Gargano Promontory and Murge Plateau. Results point to a prominent role played by the geological characteristics of limestones on development and localization of bedding-parallel stylolites within shallow-water, platform limestone successions. In particular, bedding-parallel lamination and fine rock grain size, co-occurring in stromatolitic limestones, determined there laterally more extensive and closely spaced stylolites than in the associated calcilutites and calcarenites. Large fenestral pores, which are ubiquitous in stromatolitic limestones, represent rock heterogeneities able to influence the roughness of individual stylolites. Laboratory measurements revealed that the permeability of the studied Cretaceous limestones is very low (<10 μD). Pilot tests suggest that bedding-parallel stylolites in stromatolitic layers are not barrier to fluid flow but may represent pathways through low-permeability, platform limestone successions in the subsurface.


Journal of the Geological Society | 2016

Fibrous gypsum veins as diffuse features and within fault zones: the case study of the Pisco Basin (Ica desert, southern Peru)

Andrea Rustichelli; Claudio Di Celma; Emanuele Tondi; Patrick Baud; S. Vinciguerra

New knowledge on patterns of fibrous gypsum veins, their genetic mechanisms, deformation style and weathering is provided by a field- and laboratory-based study carried out on the Neogene to Quaternary Pisco Basin sedimentary strata exposed in the Ica desert, southern Peru. Gypsum veins vary considerably in dimensions, attitudes and timing, and can develop in layered and moderately fractured rocks also in the absence of evaporitic layers. Veins occur both as diffuse features, confined to certain stratigraphic levels, and localized within fault zones. Arrays formed by layer-bounded, mutually orthogonal sets of steeply dipping gypsum veins are reported for the first time. Vein length, height and spacing depend on the thickness of the bed packages in which they are confined. Within fault zones, veins are partly a product of faulting but are also inherited layer-bounded features along which faults are superimposed. Owing to the different petrophysical properties with respect to the parent rocks and their susceptibility to textural and mineralogical modifications, water dissolution and rupture, gypsum veins may have a significant role in geofluid management. Depending on their patterns and grade of physical and chemical alteration, veins may influence geofluid circulation and storage, acting as barriers to flow and possibly also as conduits.


Bollettino Della Societa Geologica Italiana | 2015

Dolomitization impact on fracture density in pelagic carbonates: contrasting case studies from the Gargano Promontory and the Southern Apennines (Italy)

Andrea Rustichelli; Alessandro Iannace; Monica Girundo

The results of combined field and laboratory analyses carried out in well bedded, partly dolomitized successions of Mesozoic pelagic carbonates outcropping in the Gargano Promontory and Southern Apennines (Italy), revealed that dolomitization can exert opposite roles in modulating fracture density of carbonate successions.The coarsely crystalline dolomites of the Gargano Promontory, which are characterized by planar-S to planar-E textures and some intercrystalline porosity (3.6-18.4%), are less densely affected by stratabound fractures (mostly joints) than the precursor micritic limestones. In contrast, the finer-crystalline, no porous dolomites outcropping in the Southern Apennines, which are dominated by non-planar-A textures, are more densely fractured than the precursor micritic limestones. Therefore, intrinsic textural parameters of dolomites, such as crystal size, texture and porosity played a prominent role in modulating stratabound fracture density. In addition, dolomites of the Gargano Promontory are thicker bedded than the precursor limestone beds due to their diagenetic homogenization, which is enhanced by absence of strongly stylolitized bed surfaces and marly interlayers. This contributed to reduce the overall density of the stratabound fractures formed later.As density of stratabound fractures is considered a prominent factor affecting the large-scale porosity of carbonate rocks, the results of this study provide new insights on how dolomitization may either increase or reduce the quality of fractured reservoirs of geofluids through its multiple controls on density of such fractures.


Bollettino Della Societa Geologica Italiana | 2015

Shearing of syn-sedimentary carbonate breccia along strike-slip faults, Altamura Fm., Southern Italy

Salvatore Laurita; Fabrizio Agosta; Francesco Cavalcante; Andrea Rustichelli; M. Giorgioni

Fault breccia present along strike-slip faults was studied by mean of an integrated field and laboratory investigation. In particular, samples of sheared pre-existing, syn-sedimentary gravitative breccia were detailed studied in order to decipher the deformation mechanisms associated to strike-slip faulting. The sheared gravitative breccia is made up of matrix-supported, monomictic, unsorted intraformational fragments embedded within a reddish hematiterich, clayish matrix. Microsparry calcite cement is also present around the limestone fragments. In contrast, tectonic breccia consists of comminuted limestone fragments embedded in a calcite-rich matrix also including small amounts of reddish matrix. Particle shape analysis of representative images of the study hand specimens shows a variability of the box-counting dimension (D0-value) between the two different types of breccias, which can be explained in terms of peculiar strain localization within a threefold aggregate that characterizes the gravitative breccia, which is made up of calcite fragments, clayish matrix and very minute oxides.


Journal of Maps | 2015

Evolution of the Gelasian (Pleistocene) slope turbidite systems of southern Marche (Peri-Adriatic basin, central Italy)

Claudio Di Celma; Riccardo Teloni; Andrea Rustichelli

Examples of slope channels and canyons being diverted by structurally related sea-floor topography are commonly found both on the modern seabed and in the subsurface, in deep-water fold and thrust belts but their depositional histories have rarely been documented using examples from outcrop. The synthesis of outcrop (original geological field mapping at 1:10,000 scale) and subsurface data sets from the early Pleistocene stratigraphic succession of the Peri-Adriatic basin provides a window into the overall evolutionary pattern of large intraslope turbidite systems that, during the Gelasian (2.58–1.80 Ma), shed Apennine-derived clastic sediments into the adjacent deep-water basin. Trends from mapping and paleocurrent indicators converge to indicate that the sea-floor bathymetric expression of a thrust-related anticline, the north-trending Jesi-Nereto-Zaccheo structure, likely influenced the downslope transport direction of gravity flows and sediment dispersal pattern. During early and middle Gelasian time, coarse-grained turbidite deposition occurred on the western flank of the intraslope anticline by westerly sourced, northward-flowing turbidity currents, indicating that the opposing sea-floor topography was sufficient to cause the diversion of turbidite systems, forcing them to travel near parallel to the east-facing regional paleoslope for significant distances. By very late Gelasian time, the intraslope accommodation space on the western flank of the anticline had filled and turbidites were dispersed through dip-oriented conduits incising across the crest of the underlying structure.


Journal of Maps | 2014

Geology and sedimentary facies of the Pliocene succession of the Baronia Mountains (Ariano Basin, southern Italy)

Claudio Di Celma; Andrea Rustichelli; Emanuele Tondi

An up to 1500 m-thick clastic succession, the late Zanclean Baronia Synthem, has been analysed in detail in the Ariano wedge-top Basin (southern Apennine, Italy). In the Baronia Mountains the studied sediments are well exposed and laterally mappable due to young uplift and exhumation and rest unconformably on a complexly deformed pre-Pliocene substratum formed by Triassic to Miocene allochthonous units. The Baronia Synthem has been resolved into seven facies associations that are representative of distinct fluvial, deltaic, nearshore and offshore depositional environments and can be grouped into lowstand, transgressive, and highstand systems tracts. Using an integrated approach comprising original geological field mapping at 1:10,000 scale, conventional sedimentary facies analysis and a sequence stratigraphic approach, this paper provides a detailed description and interpretation of facies associations and new insights on the stratigraphic architecture and the geological history of this portion of the basin fill.

Collaboration


Dive into the Andrea Rustichelli's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Patrick Baud

University of Strasbourg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge