Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andrea S. Bertke is active.

Publication


Featured researches published by Andrea S. Bertke.


Proceedings of the National Academy of Sciences of the United States of America | 2008

An acutely and latently expressed herpes simplex virus 2 viral microRNA inhibits expression of ICP34.5, a viral neurovirulence factor

Shuang Tang; Andrea S. Bertke; Amita Patel; Kening Wang; Jeffrey I. Cohen; Philip R. Krause

Latency-associated transcript (LAT) sequences regulate herpes simplex virus (HSV) latency and reactivation from sensory neurons. We found a HSV-2 LAT-related microRNA (miRNA) designated miR-I in transfected and infected cells in vitro and in acutely and latently infected ganglia of guinea pigs in vivo. miR-I is also expressed in human sacral dorsal root ganglia latently infected with HSV-2. miR-I is expressed under the LAT promoter in vivo in infected sensory ganglia. We also predicted and identified a HSV-1 LAT exon-2 viral miRNA in a location similar to miR-I, implying a conserved mechanism in these closely related viruses. In transfected and infected cells, miR-I reduces expression of ICP34.5, a key viral neurovirulence factor. We hypothesize that miR-I may modulate the outcome of viral infection in the peripheral nervous system by functioning as a molecular switch for ICP34.5 expression.


Journal of Virology | 2011

A5-Positive Primary Sensory Neurons Are Nonpermissive for Productive Infection with Herpes Simplex Virus 1 In Vitro

Andrea S. Bertke; Sophia M. Swanson; Jenny Chen; Yumi Imai; Paul R. Kinchington; Todd P. Margolis

ABSTRACT Herpes simplex viruses 1 and 2 (HSV-1 and HSV-2) establish latency and express the latency-associated transcript (LAT) preferentially in different murine sensory neuron populations, with most HSV-1 LAT expression in A5+ neurons and most HSV-2 LAT expression in KH10+ neurons. To study the mechanisms regulating the establishment of HSV latency in specific subtypes of neurons, cultured dissociated adult murine trigeminal ganglion (TG) neurons were assessed for relative permissiveness for productive infection. In contrast to that for neonatal TG, the relative distribution of A5+ and KH10+ neurons in cultured adult TG was similar to that seen in vivo. Productive infection with HSV was restricted, and only 45% of cultured neurons could be productively infected with either HSV-1 or HSV-2. A5+ neurons supported productive infection with HSV-2 but were selectively nonpermissive for productive infection with HSV-1, a phenomenon that was not due to restricted viral entry or DNA uncoating, since HSV-1 expressing β-galactosidase under the control of the neurofilament promoter was detected in ∼90% of cultured neurons, with no preference for any neuronal subtype. Infection with HSV-1 reporter viruses expressing enhanced green fluorescent protein (EGFP) from immediate early (IE), early, and late gene promoters indicated that the block to productive infection occurred before IE gene expression. Trichostatin A treatment of quiescently infected neurons induced productive infection preferentially from non-A5+ neurons, demonstrating that the nonpermissive neuronal subtype is also nonpermissive for reactivation. Thus, HSV-1 is capable of entering the majority of sensory neurons in vitro; productive infection occurs within a subset of these neurons; and this differential distribution of productive infection is determined at or before the expression of the viral IE genes.


Journal of Virology | 2011

Herpes simplex virus 2 microRNA miR-H6 is a novel latency-associated transcript-associated microRNA, but reduction of its expression does not influence the establishment of viral latency or the recurrence phenotype.

Shuang Tang; Andrea S. Bertke; Amita Patel; Todd P. Margolis; Philip R. Krause

ABSTRACT The herpes simplex virus 2 (HSV-2) viral microRNA (miRNA) designated miR-H6 is located upstream of the latency-associated transcript (LAT) promoter region on the strand opposite the LAT. Deletion of the LAT promoter and part of LAT exon 1 abolished HSV-2 miR-H6 expression in acutely and latently infected guinea pig dorsal root ganglia (DRG), suggesting that this region is needed both for the expression of LAT-encoded miRNAs and for miR-H6 expression in vivo. Relative to cells infected with a viral rescuant, miR-H6 expression was significantly reduced in cells infected with a mutant HSV-2 virus, NotPolyA, with an insertion of a simian virus (SV40) polyadenylation signal sequence between the LAT promoter and miR-H6 sequences. In addition, expression of miR-H6, but not LAT or viral DNA, was significantly reduced in both mouse trigeminal ganglia (TG) and guinea pig DRG latently infected with the NotPolyA mutant. Guinea pigs infected with NotPolyA experienced reduced neurological complications of acute infection relative to those infected with the rescuant, but the recurrence phenotype of the NotPolyA mutant was similar to those of its rescuant and wild-type HSV-2, indicating that reduction of miR-H6 expression is not by itself able to alter the establishment of latency for the wild-type virus or the recurrence phenotype. Furthermore, the mutation in NotPolyA did not affect the propensity of wild-type HSV-2 to establish latency in neurons positive for subtype marker KH10. In contrast to published reports regarding its HSV-1 homolog, HSV-2 miR-H6 did not affect ICP4 expression in transfected or infected cells. We hypothesize that viral miRNAs associated with LAT expression are likely to work collectively, contributing to the phenotype attributed to the LAT.


Journal of Virology | 2007

Herpes Simplex Virus Latency-Associated Transcript Sequence Downstream of the Promoter Influences Type-Specific Reactivation and Viral Neurotropism

Andrea S. Bertke; Amita Patel; Philip R. Krause

ABSTRACT Herpes simplex virus (HSV) establishes latency in sensory nerve ganglia during acute infection and may later periodically reactivate to cause recurrent disease. HSV type 1 (HSV-1) reactivates more efficiently than HSV-2 from trigeminal ganglia while HSV-2 reactivates more efficiently than HSV-1 from lumbosacral dorsal root ganglia (DRG) to cause recurrent orofacial and genital herpes, respectively. In a previous study, a chimeric HSV-2 that expressed the latency-associated transcript (LAT) from HSV-1 reactivated similarly to wild-type HSV-1, suggesting that the LAT influences the type-specific reactivation phenotype of HSV-2. To further define the LAT region essential for type-specific reactivation, we constructed additional chimeric HSV-2 viruses by replacing the HSV-2 LAT promoter (HSV2-LAT-P1) or 2.5 kb of the HSV-2 LAT sequence (HSV2-LAT-S1) with the corresponding regions from HSV-1. HSV2-LAT-S1 was impaired for reactivation in the guinea pig genital model, while its rescuant and HSV2-LAT-P1 reactivated with a wild-type HSV-2 phenotype. Moreover, recurrences of HSV-2-LAT-S1 were frequently fatal, in contrast to the relatively mild recurrences of the other viruses. During recurrences, HSV2-LAT-S1 DNA increased more in the sacral cord compared to its rescuant or HSV-2. Thus, the LAT sequence region, not the LAT promoter region, provides essential elements for type-specific reactivation of HSV-2 and also plays a role in viral neurotropism. HSV-1 DNA, as quantified by real-time PCR, was more abundant in the lumbar spinal cord, while HSV-2 DNA was more abundant in the sacral spinal cord, which may provide insights into the mechanism for type-specific reactivation and different patterns of central nervous system infection of HSV-1 and HSV-2.


Vaccine | 2009

CD4+ T cells provide protection against acute lethal encephalitis caused by Venezuelan equine encephalitis virus

Nadezhda E. Yun; Bi Hung Peng; Andrea S. Bertke; Viktoriya Borisevich; Jennifer K. Smith; Jeanon N. Smith; Allison Poussard; Milagros Salazar; Barbara M. Judy; Michele A. Zacks; D. Mark Estes; Slobodan Paessler

Studying the mechanisms of host survival resulting from viral encephalitis is critical to the development of vaccines. Here we have shown in several independent studies that high dose treatment with neutralizing antibody prior to intranasal infection with Venezuelan equine encephalitis virus had an antiviral effect in the visceral organs and prolonged survival time of infected mice, even in the absence of alphabeta T cells. Nevertheless, antibody treatment did not prevent the development of lethal encephalitis. On the contrary, the adoptive transfer of primed CD4(+) T cells was necessary to prevent lethal encephalitis in mice lacking alphabeta T cell receptor.


Journal of Virology | 2009

Latency-Associated Transcript (LAT) Exon 1 Controls Herpes Simplex Virus Species-Specific Phenotypes: Reactivation in the Guinea Pig Genital Model and Neuron Subtype-Specific Latent Expression of LAT

Andrea S. Bertke; Amita Patel; Yumi Imai; Kathleen Apakupakul; Todd P. Margolis; Philip R. Krause

ABSTRACT Herpes simplex virus 1 (HSV-1) and HSV-2 cause similar acute infections but differ in their abilities to reactivate from trigeminal and lumbosacral dorsal root ganglia. During latency, HSV-1 and HSV-2 also preferentially express their latency-associated transcripts (LATs) in different sensory neuronal subtypes that are positive for A5 and KH10 markers, respectively. Chimeric virus studies showed that LAT region sequences influence both of these viral species-specific phenotypes. To further map the LAT region sequences responsible for these phenotypes, we constructed the chimeric virus HSV2-LAT-E1, in which exon 1 (from the LAT TATA to the intron splice site) was replaced by the corresponding sequence from HSV-1 LAT. In intravaginally infected guinea pigs, HSV2-LAT-E1 reactivated inefficiently relative to the efficiency of its rescuant and wild-type HSV-2, but it yielded similar levels of viral DNA, LAT, and ICP0 during acute and latent infection. HSV2-LAT-E1 preferentially expressed the LAT in A5+ neurons (as does HSV-1), while the chimeric viruses HSV2-LAT-P1 (LAT promoter swap) and HSV2-LAT-S1 (LAT sequence swap downstream of the promoter) exhibited neuron subtype-specific latent LAT expression phenotypes more similar to that of HSV-2 than that of HSV-1. Rescuant viruses displayed the wild-type HSV-2 phenotypes of efficient reactivation in the guinea pig genital model and a tendency to express LAT in KH10+ neurons. The region that is critical for HSV species-specific differences in latency and reactivation thus lies between the LAT TATA and the intron splice site, and minor differences in the 5′ ends of chimeric sequences in HSV2-LAT-E1 and HSV2-LAT-S1 point to sequences immediately downstream of the LAT TATA.


Journal of Virology | 2013

Different Mechanisms Regulate Productive Herpes Simplex Virus 1 (HSV-1) and HSV-2 Infections in Adult Trigeminal Neurons

Andrea S. Bertke; AyeAye Ma; Mathew S. Margolis; Todd P. Margolis

ABSTRACT Herpes simplex virus 1 (HSV-1) and HSV-2 establish latency in different neuronal subtypes (A5+ and KH10+) in murine trigeminal ganglia, results which correlate with restricted productive infection in these neurons in vitro. HSV-2 latency-associated transcript (LAT) contains a cis-acting regulatory element near the transcription start site that promotes productive infection in A5+ neurons and a second element in exon 1 that inhibits productive infection in KH10+ neurons. HSV-1 contains no such regulatory sequences, demonstrating different mechanisms for regulating productive HSV infection in neurons.


Journal of Medical Virology | 2016

Risk factors and sources of foodborne hepatitis E virus infection in the United States

Caitlin M. Cossaboom; Connie L. Heffron; Dianjun Cao; Danielle M. Yugo; Alice E. Houk-Miles; David S. Lindsay; Anne M. Zajac; Andrea S. Bertke; François Elvinger; Xiang-Jin Meng

Hepatitis E virus (HEV) is an important human pathogen with pigs and other species serving as natural animal reservoirs. Ample evidence documents sporadic cases of hepatitis E acquired via consumption of undercooked meat. Chronic hepatitis E cases in immunosuppressed individuals are mostly caused by zoonotic HEV of swine origin. We report here the identification of genotype 3 HEV from non‐liver commercial pork from local grocery stores in southwest Virginia, and association of HEV seropositivity to the consumption of undercooked meat in healthy young adults at a university in the United States. These results raise concerns about foodborne HEV transmission in the United States. J. Med. Virol. 88:1641–1645, 2016.


Journal of Virology | 2011

Spread of Herpes Simplex Virus to the Spinal Cord Is Independent of Spread to Dorsal Root Ganglia

Masahiro Ohashi; Andrea S. Bertke; Amita Patel; Philip R. Krause

ABSTRACT Levels of herpes simplex virus 1 (HSV-1) and HSV-2 DNA in dorsal root ganglia (DRG) and spinal cord (SC) were quantified after inoculation of guinea pig genitals and footpads. In genital infection, viral DNA reached SC and DRG simultaneously (at 2 to 3 days after inoculation) but was more abundant in SC than in DRG. After inoculation of footpads, which lack parasympathetic innervation, the viruses spread more efficiently to DRG than to SC. These results show important differences between genital and footpad infections, including independence of spread to DRG and SC, and imply that autonomic neurons may play an important role in the pathogenesis of viral latency after genital inoculation.


Journal of Virology | 2015

Herpes Simplex Virus 1 Reactivates from Autonomic Ciliary Ganglia Independently from Sensory Trigeminal Ganglia To Cause Recurrent Ocular Disease

Sungseok Lee; Angela M. Ives; Andrea S. Bertke

ABSTRACT Herpes simplex virus 1 (HSV-1) and HSV-2 establish latency in sensory and autonomic neurons after ocular or genital infection, but their recurrence patterns differ. HSV-1 reactivates from latency to cause recurrent orofacial disease, and while HSV-1 also causes genital lesions, HSV-2 recurs more efficiently in the genital region and rarely causes ocular disease. The mechanisms regulating these anatomical preferences are unclear. To determine whether differences in latent infection and reactivation in autonomic ganglia contribute to differences in HSV-1 and HSV-2 anatomical preferences for recurrent disease, we compared HSV-1 and HSV-2 clinical disease, acute and latent viral loads, and viral gene expression in sensory trigeminal and autonomic superior cervical and ciliary ganglia in a guinea pig ocular infection model. HSV-2 produced more severe acute disease, correlating with higher viral DNA loads in sensory and autonomic ganglia, as well as higher levels of thymidine kinase expression, a marker of productive infection, in autonomic ganglia. HSV-1 reactivated in ciliary ganglia, independently from trigeminal ganglia, to cause more frequent recurrent symptoms, while HSV-2 replicated simultaneously in autonomic and sensory ganglia to cause more persistent disease. While both HSV-1 and HSV-2 expressed the latency-associated transcript (LAT) in the trigeminal and superior cervical ganglia, only HSV-1 expressed LAT in ciliary ganglia, suggesting that HSV-2 is not reactivation competent or does not fully establish latency in ciliary ganglia. Thus, differences in replication and viral gene expression in autonomic ganglia may contribute to differences in HSV-1 and HSV-2 acute and recurrent clinical disease. IMPORTANCE Herpes simplex virus 1 (HSV-1) and HSV-2 establish latent infections, from which the viruses reactivate to cause recurrent disease throughout the life of the host. However, the viruses exhibit different manifestations and frequencies of recurrent disease. HSV-1 and HSV-2 establish latency in both sensory and autonomic ganglia. Autonomic ganglia are more responsive than sensory ganglia to stimuli associated with recurrent disease in humans, such as stress and hormone fluctuations, suggesting that autonomic ganglia may play an important role in recurrent disease. We show that HSV-1 can reactivate from autonomic ganglia, independently from sensory ganglia, to cause recurrent ocular disease. We found no evidence that HSV-2 could reactivate from autonomic ganglia independently from sensory ganglia after ocular infection, but HSV-2 did replicate in both ganglia simultaneously to cause persistent disease. Thus, viral replication and reactivation in autonomic ganglia contribute to different clinical disease manifestations of HSV-1 and HSV-2 after ocular infection.

Collaboration


Dive into the Andrea S. Bertke's collaboration.

Top Co-Authors

Avatar

Todd P. Margolis

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Philip R. Krause

Center for Biologics Evaluation and Research

View shared research outputs
Top Co-Authors

Avatar

Amita Patel

Center for Biologics Evaluation and Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

AyeAye Ma

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shuang Tang

Center for Biologics Evaluation and Research

View shared research outputs
Top Co-Authors

Avatar

Yumi Imai

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jeffrey I. Cohen

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge