Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andrea Scaloni is active.

Publication


Featured researches published by Andrea Scaloni.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Crystal structure of the catalytic domain of the tumor-associated human carbonic anhydrase IX.

Vincenzo Alterio; Mika Hilvo; Anna Di Fiore; Claudiu T. Supuran; Peiwen Pan; Seppo Parkkila; Andrea Scaloni; Jaromir Pastorek; Silvia Pastorekova; Carlo Pedone; Andrea Scozzafava; Simona Maria Monti; Giuseppina De Simone

Carbonic anhydrase (CA) IX is a plasma membrane-associated member of the α-CA enzyme family, which is involved in solid tumor acidification. It is a marker of tumor hypoxia and a prognostic factor in several human cancers. An aberrant increase in CA IX expression in chronic hypoxia and during development of various carcinomas contributes to tumorigenesis through at least two mechanisms: pH regulation and cell adhesion control. Here we report the X-ray structure of the catalytic domain of CA IX in complex with a classical, clinically used sulfonamide inhibitor, acetazolamide. The structure reveals a typical α-CA fold, which significantly differs from the other CA isozymes when the protein quaternary structure is considered. Thus, two catalytic domains of CA IX associate to form a dimer, which is stabilized by the formation of an intermolecular disulfide bond. The active site clefts and the PG domains are located on one face of the dimer, while the C-termini are located on the opposite face to facilitate protein anchoring to the cell membrane. A correlation between the three-dimensional structure and the physiological role of the enzyme is here suggested, based on the measurement of the pH profile of the catalytic activity for the physiological reaction, CO2 hydration to bicarbonate and protons. On the basis of the structural differences observed between CA IX and the other membrane-associated α-CAs, further prospects for the rational drug design of isozyme-specific CA inhibitors are proposed, given that inhibition of this enzyme shows antitumor activity both in vitro and in vivo.


Journal of Biological Chemistry | 1997

A Novel White Laccase from Pleurotus ostreatus

Gianna Palmieri; Paola Giardina; Carmen Bianco; Andrea Scaloni; Antonio Capasso; Giovanni Sannia

Two laccase isoenzymes (POXA1 and POXA2) produced by Pleurotus ostreatus were purified and fully characterized. POXA1 and POXA2 are monomeric glycoproteins with 3 and 9% carbohydrate content, molecular masses of about 61 and 67 kDa by sodium dodecyl sulfate polyacrylamide gel electrophoresis, of about 54 and 59 kDa by gel filtration in native conditions, and of 61 kDa by matrix-assisted laser desorption ionization mass spectrometry (only for POXA1) and pI values of 6.7 and 4.0, respectively. The N terminus and three tryptic peptides of POXA1 have been sequenced, revealing clear homology with laccases from other microorganisms, whereas POXA2 showed a blocked N terminus. The stability of POXA2 as a function of temperature was particularly low, whereas POXA1 showed remarkable high stability with respect to both pH and temperature. Both enzymes oxidize syringaldazine and ABTS (2, 2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)) together with a variety of different substituted phenols and aromatic amines with the concomitant reduction of oxygen, but POXA1 is unable to oxidize guaiacol. Both enzymes were strongly inhibited by sodium azide and thioglycolic acid but not by EDTA. UV/visible absorption spectra, atomic adsorption, and polarographic data indicated the presence of 4 copper atoms/mol of POXA2 but only one copper, two zinc, and one iron atoms were found/mol of POXA1. The neutral pI and the anomalous metal content of POXA1 laccase render this enzyme unique in its structural characteristics. The lack of typical absorbance at 600 nm allows its classification as a “white” laccase.


Journal of Biological Chemistry | 2008

Biochemical characterization of CA IX: one of the most active carbonic anhydrase isozymes

Mika Hilvo; Lina Baranauskiene; Anna Maria Salzano; Andrea Scaloni; Daumantas Matulis; Alessio Innocenti; Andrea Scozzafava; Simona Maria Monti; Anna Di Fiore; Giuseppina De Simone; Mikaela Lindfors; Janne Jänis; Jarkko Valjakka; Silvia Pastorekova; Jaromir Pastorek; Markku S. Kulomaa; Henri R. Nordlund; Claudiu T. Supuran; Seppo Parkkila

Carbonic anhydrase IX (CA IX) is an exceptional member of the CA protein family; in addition to its classical role in pH regulation, it has also been proposed to participate in cell proliferation, cell adhesion, and tumorigenic processes. To characterize the biochemical properties of this membrane protein, two soluble recombinant forms were produced using the baculovirus-insect cell expression system. The recombinant proteins consisted of either the CA IX catalytic domain only (CA form) or the extracellular domain, which included both the proteoglycan and catalytic domains (PG + CA form). The produced proteins lacked the small transmembrane and intracytoplasmic regions of CA IX. Stopped-flow spectrophotometry experiments on both proteins demonstrated that in the excess of certain metal ions the PG + CA form exhibited the highest catalytic activity ever measured for any CA isozyme. Investigations on the oligomerization and stability of the enzymes revealed that both recombinant proteins form dimers that are stabilized by intermolecular disulfide bond(s). Mass spectrometry experiments showed that CA IX contains an intramolecular disulfide bridge (Cys119-Cys299) and a unique N-linked glycosylation site (Asn309) that bears high mannose-type glycan structures. Parallel experiments on a recombinant protein obtained by a mammalian cell expression system demonstrated the occurrence of an additional O-linked glycosylation site (Thr78) and characterized the nature of the oligosaccharide structures. This study provides novel information on the biochemical properties of CA IX and may help characterize the various cellular and pathophysiological processes in which this unique enzyme is involved.


Proceedings of the National Academy of Sciences of the United States of America | 2008

The neutrophil gelatinase-associated lipocalin (NGAL), a NF-B-regulated gene, is a survival factor for thyroid neoplastic cells

Alessio Iannetti; Francesco Pacifico; Renato Acquaviva; Alfonso Lavorgna; Elvira Crescenzi; Carlo Vascotto; Gianluca Tell; Anna Maria Salzano; Andrea Scaloni; Emilia Vuttariello; Gennaro Chiappetta; Silvestro Formisano; Antonio Leonardi

NF-κB is constitutively activated in primary human thyroid tumors, particularly in those of anaplastic type. The inhibition of NF-κB activity in the human anaplastic thyroid carcinoma cell line, FRO, leads to an increased susceptibility to chemotherapeutic drug-induced apoptosis and to the blockage of their ability to form tumors in nude mice. To identify NF-κB target genes involved in thyroid cancer, we analyzed the secretome of conditioned media from parental and NF-κB-null FRO cells. Proteomic analysis revealed that the neutrophil gelatinase-associated lipocalin (NGAL), a protein involved in inflammatory and immune responses, is secreted by FRO cells whereas its expression is strongly reduced in the NF-κB-null FRO cells. NGAL is highly expressed in human thyroid carcinomas, and knocking down its expression blocks the ability of FRO cells to grow in soft agar and form tumors in nude mice. These effects are reverted by the addition of either recombinant NGAL or FRO conditioned medium. In addition, we show that the prosurvival activity of NGAL is mediated by its ability to bind and transport iron inside the cells. Our data suggest that NF-κB contributes to thyroid tumor cell survival by controlling iron uptake via NGAL.


Molecular and Cellular Biology | 2009

APE1/Ref-1 Interacts with NPM1 within Nucleoli and Plays a Role in the rRNA Quality Control Process

Carlo Vascotto; Damiano Fantini; Milena Romanello; Laura Cesaratto; Marta Deganuto; Antonio Leonardi; J. Pablo Radicella; Mark R. Kelley; Chiara D'Ambrosio; Andrea Scaloni; Franco Quadrifoglio; Gianluca Tell

ABSTRACT APE1/Ref-1 (hereafter, APE1), a DNA repair enzyme and a transcriptional coactivator, is a vital protein in mammals. Its role in controlling cell growth and the molecular mechanisms that fine-tune its different cellular functions are still not known. By an unbiased proteomic approach, we have identified and characterized several novel APE1 partners which, unexpectedly, include a number of proteins involved in ribosome biogenesis and RNA processing. In particular, a novel interaction between nucleophosmin (NPM1) and APE1 was characterized. We observed that the 33 N-terminal residues of APE1 are required for stable interaction with the NPM1 oligomerization domain. As a consequence of the interaction with NPM1 and RNA, APE1 is localized within the nucleolus and this localization depends on cell cycle and active rRNA transcription. NPM1 stimulates APE1 endonuclease activity on abasic double-stranded DNA (dsDNA) but decreases APE1 endonuclease activity on abasic single-stranded RNA (ssRNA) by masking the N-terminal region of APE1 required for stable RNA binding. In APE1-knocked-down cells, pre-rRNA synthesis and rRNA processing were not affected but inability to remove 8-hydroxyguanine-containing rRNA upon oxidative stress, impaired translation, lower intracellular protein content, and decreased cell growth rate were found. Our data demonstrate that APE1 affects cell growth by directly acting on RNA quality control mechanisms, thus affecting gene expression through posttranscriptional mechanisms.


Journal of Proteome Research | 2008

Exploring the chicken egg white proteome with combinatorial peptide ligand libraries.

Chiara D’Ambrosio; Simona Arena; Andrea Scaloni; Luc Guerrier; Egisto Boschetti; Martha Elena Mendieta; Attilio Citterio; Pier Giorgio Righetti

The use of two types of peptide ligand libraries (PLL), containing hexapeptides terminating either with a primary amine or modified with a terminal carboxyl group, allowed the discovery and identification of a large number of previously unreported egg white proteins. Whereas the most comprehensive list up to date ( Mann, K. , Proteomics 2007, 7, 3558- 3568 ) tabulated 78 unique gene products, our findings have almost doubled that value to 148 unique protein species. From the initial nontreated egg, it was possible to find 41 protein species; the difference (107 proteins) was generated as a result of the use of PLLs from which a similar number of species (112 and 109, respectively) was evidenced. Of those, 35 proteins were the specific catch of the amino-terminus PLL, while 33 were uniquely captured by the carboxy-terminus PLL. While a number of these low-abundance proteins might have a biological role in maintaining the integrity of the egg white and protecting the yolk, others might be derived from decaying epithelial cells lining the oviduct and/or represent remnants of products from the magnum and eggshell membrane components secreted by the isthmus, which might ultimately be incorporated, even if in trace amounts, into the egg white. The list of egg white components here reported is by far the most comprehensive at present and could serve as a starting point for isolation and functional characterization of proteins possibly having novel pharmaceutical and biomedical applications.


Cellular and Molecular Life Sciences | 2003

Soluble proteins of chemical communication in the social wasp Polistes dominulus.

M. Calvello; N. Guerra; Anna Brandazza; Chiara D'Ambrosio; Andrea Scaloni; Francesca R. Dani; Stefano Turillazzi; Paolo Pelosi

Members of the odorant-binding protein (OBP) and chemosensory protein (CSP) families were identified and characterised in the sensory tissues of the social wasp Polistes dominulus (Hymenoptera: Vespidae). Unlike most insects so far investigated, OBPs were detected in antennae, legs and wings, while CSPs appeared to be preferentially expressed in the antennae. The OBP is very different from the homologous proteins of other Hymenopteran species, with around 20% of identical residues, while the CSP appears to be much better conserved. Both OBP and CSP, not showing other post-translational modifications apart from disulphide bridges, were expressed with high yields in a bacterial system. Cysteine pairing in the recombinant and native proteins follows the classical arrangements described for other members of these classes of proteins. OBPs isolated from the wings were found to be associated with a number of long-chain aliphatic amides and other small organic molecules. Binding of these ligands and other related compounds was measured for both recombinant OBP and CSP.


Insect Molecular Biology | 2003

Chemosensory proteins of Locusta migratoria

L. Ban; Andrea Scaloni; Anna Brandazza; Sergio Angeli; Zhang Ld; Y. Yan; Paolo Pelosi

Two different classes of chemosensory proteins (CSPs) in Locusta migratoria have been identified on the basis of the molecular cloning of a series of different cDNAs from the antennae of this insect. Several CSP isoforms have been purified and biochemically characterized from antennal and wing extracts, some of them corresponding to expression products predicted for the identified cDNAs. In wings, the nature of the main endogenous ligand binding to these proteins was determined as oleoamide by a gas chromatography–mass spectrometric approach. One of these isoforms has been expressed in a bacterial system with high yield and used in a fluorescent binding assay. Competitive binding experiments have indicated the presence of long‐chain compounds among the best ligands.


Cellular and Molecular Life Sciences | 2003

Biochemical characterization and bacterial expression of an odorant-binding protein from Locusta migratoria

Liping Ban; Andrea Scaloni; Chiara D'Ambrosio; Zhang Ld; Y. Yan; Paolo Pelosi

Abstract. Analysis of soluble proteins from different body parts of Locusta migratoria revealed a fast-migrating component in native electrophoresis, unique to antennae of both sexes. N-terminal sequence analysis and cloning identified this protein as a member of the insect odorant-binding proteins, carrying a well-conserved six-cysteine motif. Mass spectrometry analysis confirmed the occurrence of two distinct polypeptide species determined by nucleotide sequencing and demonstrated that the cysteine residues are paired in an interlocked fashion. The protein was expressed in a bacterial system with yields of about 10 mg/l of culture, mostly present as inclusion bodies. However, this recombinant product was solubilized after disulfide reduction. Air oxidation yielded a species with all disulfides spontaneously formed as in the native counterpart. Both native and recombinant proteins migrated as a dimer in gel filtration chromatography. Ligand binding was measured, using N-phenyl-1-naphthylamine as the fluorescent probe; the affinity of other ligands was measured in competitive binding assays. The protein exhibited great resistance to thermal denaturation even following prolonged treatment at 100°C. A structural model for this dimeric species was generated on the basis of its sequence homology with Bombyx mori pheromone-binding protein, whose three-dimensional structure has been resolved as an unbound species and in complex with its physiological ligand. This is the first report of an odorant-binding protein identified and characterized from Orthoptera.


Meat Science | 2005

Proteomic analysis of water soluble and myofibrillar protein changes occurring in dry-cured hams

Aldo Di Luccia; Gianluca Picariello; Giuseppina Cacace; Andrea Scaloni; M. Faccia; Vitantonio Liuzzi; G. Alviti; Salvatore Spagna Musso

The myofibrillar fraction of raw ham muscles and dry-cured hams with different ripening times was extracted in denaturing and reducing conditions and subjected to two-dimensional gel electrophoresis. The two-dimensional maps gave overall pictures of the already noted progressive disappearance of actin, tropomyosin and myosin light chains during ripening. In addition, two fragments from Myosin Heavy Chain proteolysis, marked as myosin chain fragments MCF1 and MCF2, were identified by immunodetection and matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS). Furthermore, a new form of actin on two-dimensional gel was identified by MALDI-TOF peptide mapping. In 12-month-old dry-cured ham, most myofibrillar proteins were completely hydrolyzed. At this stage of ripening, in fact, in some Parma and S. Daniele dry-cured ham samples, myosin heavy chain fragments and other unidentified neo-formed spots were found. Some of the sarcoplasmic proteins in water extracts from pork meat markedly decreased in amount or disappeared totally, during ripening. Surprisingly, two-dimensional gel electrophoresis maps of the water soluble protein fraction from dry-cured ham showed the presence of two spots identified as tropomyosin α- and β-chain. This result suggests that some of the saline soluble myofibrillar proteins can disappear from this fraction because of salt solubilization and not due to complete enzyme action. Two-dimensional gel electrophoresis (2-DGE) has proved a powerful tool to evaluate the enzymatic susceptibility of meat proteins and the evolution of protein map fragmentation throughout ripening process as well as a means of obtaining a standard fingerprinting map characterizing the final product.

Collaboration


Dive into the Andrea Scaloni's collaboration.

Top Co-Authors

Avatar

Giovanni Renzone

French Institute of Health and Medical Research

View shared research outputs
Top Co-Authors

Avatar

Simona Arena

National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nicola Zambrano

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge