Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andrea Schrader is active.

Publication


Featured researches published by Andrea Schrader.


Plant Journal | 2013

Light and the E3 ubiquitin ligase COP1/SPA control the protein stability of the MYB transcription factors PAP1 and PAP2 involved in anthocyanin accumulation in Arabidopsis

Alexander Maier; Andrea Schrader; Leonie Kokkelink; Christian Falke; Bastian Welter; Elisa Iniesto; Vicente Rubio; Joachim F. Uhrig; Martin Hülskamp; Ute Hoecker

Anthocyanins are natural pigments that accumulate only in light-grown and not in dark-grown Arabidopsis plants. Repression of anthocyanin accumulation in darkness requires the CONSTITUTIVELY PHOTOMORPHOGENIC1/SUPPRESSOR OF PHYA-105 (COP1/SPA) ubiquitin ligase, as cop1 and spa mutants produce anthocyanins also in the dark. Here, we show that COP1 and SPA proteins interact with the myeloblastosis (MYB) transcription factors PRODUCTION OF ANTHOCYANIN PIGMENT1 (PAP)1 and PAP2, two members of a small protein family that is required for anthocyanin accumulation and for the expression of structural genes in the anthocyanin biosynthesis pathway. The increased anthocyanin levels in cop1 mutants requires the PAP1 gene family, indicating that COP1 functions upstream of the PAP1 gene family. PAP1 and PAP2 proteins are degraded in the dark and this degradation is dependent on the proteasome and on COP1. Hence, the light requirement for anthocyanin biosynthesis results, at least in part, from the light-mediated stabilization of PAP1 and PAP2. Consistent with this conclusion, moderate overexpression of PAP1 leads to an increase in anthocyanin levels only in the light and not in darkness. Here we show that SPA genes are also required for reducing PAP1 and PAP2 transcript levels in dark-grown seedlings. Taken together, these results indicate that the COP1/SPA complex affects PAP1 and PAP2 both transcriptionally and post-translationally. Thus, our findings have identified mechanisms via which the COP1/SPA complex controls anthocyanin levels in Arabidopsis that may be useful for applications in biotechnology directed towards increasing anthocyanin content in plants.


The Plant Cell | 2007

MIDGET Unravels Functions of the Arabidopsis Topoisomerase VI Complex in DNA Endoreduplication, Chromatin Condensation, and Transcriptional Silencing

Viktor Kirik; Andrea Schrader; Joachim F. Uhrig; Martin Hülskamp

The plant homologs of the archaeal DNA topoisomerase VI complex are required for the progression of endoreduplication cycles. Here, we describe the identification of MIDGET (MID) as a novel component of topoisomerase VI. We show that mid mutants show the same phenotype as rhl1, rhl2, and top6B mutants and that MID protein physically interacts with RHL1. The phenotypic analysis revealed new phenotypes, indicating that topoisomerase VI is involved in chromatin organization and transcriptional silencing. In addition, genetic evidence is provided suggesting that the ATR-dependent DNA damage repair checkpoint is activated in mid mutants, and CYCB1;1 is ectopically activated. Finally, we demonstrate that overexpression of CYCB1;2 can rescue the endoreduplication defects in mid mutants, suggesting that in mid mutants, a specific checkpoint is activated preventing further progression of endoreduplication cycles.


Plant Physiology | 2014

Non-Cell-Autonomous Regulation of Root Hair Patterning Genes by WRKY75 in Arabidopsis

Louai Rishmawi; Martina Pesch; Christian Juengst; Astrid Schauss; Andrea Schrader; Martin Hülskamp

The WRKY75 transcription factor is expressed in the pericycle and vascular tissues of the root and regulates root hair patterning in a non-cell-autonomous manner. In Arabidopsis (Arabidopsis thaliana), root hairs are formed in cell files over the cleft of underlying cortex cells. This pattern is established by a well-known gene regulatory network of transcription factors. In this study, we show that WRKY75 suppresses root hair development in nonroot hair files and that it represses the expression of TRIPTYCHON and CAPRICE. The WRKY75 protein binds to the CAPRICE promoter in a yeast one-hybrid assay. Binding to the promoter fragment requires an intact WRKY protein-binding motif, the W box. A comparison of the spatial expression of WRKY75 and the localization of the WRKY75 protein revealed that WRKY75 is expressed in the pericycle and vascular tissue and that the WRKY75 RNA or protein moves into the epidermis.


PLOS Computational Biology | 2013

Semi-automated 3D leaf reconstruction and analysis of trichome patterning from light microscopic images.

Henrik Failmezger; Benjamin Jaegle; Andrea Schrader; Martin Hülskamp; Achim Tresch

Trichomes are leaf hairs that are formed by single cells on the leaf surface. They are known to be involved in pathogen resistance. Their patterning is considered to emerge from a field of initially equivalent cells through the action of a gene regulatory network involving trichome fate promoting and inhibiting factors. For a quantitative analysis of single and double mutants or the phenotypic variation of patterns in different ecotypes, it is imperative to statistically evaluate the pattern reliably on a large number of leaves. Here we present a method that enables the analysis of trichome patterns at early developmental leaf stages and the automatic analysis of various spatial parameters. We focus on the most challenging young leaf stages that require the analysis in three dimensions, as the leaves are typically not flat. Our software TrichEratops reconstructs 3D surface models from 2D stacks of conventional light-microscope pictures. It allows the GUI-based annotation of different stages of trichome development, which can be analyzed with respect to their spatial distribution to capture trichome patterning events. We show that 3D modeling removes biases of simpler 2D models and that novel trichome patterning features increase the sensitivity for inter-accession comparisons.


BMC Plant Biology | 2014

Analysis of TTG1 function in Arabis alpina

Divykriti Chopra; Heike Wolff; Johannes Span; Swen Schellmann; George Coupland; Maria C. Albani; Andrea Schrader; Martin Hülskamp

BackgroundIn Arabidopsis thaliana (A. thaliana) the WD40 protein TRANSPARENT TESTA GLABRA1 (TTG1) controls five traits relevant for the adaptation of plants to environmental changes including the production of proanthocyanidin, anthocyanidin, seed coat mucilage, trichomes and root hairs. The analysis of different Brassicaceae species suggests that the function of TTG1 is conserved within the family.ResultsIn this work, we studied the function of TTG1 in Arabis alpina (A. alpina). A comparison of wild type and two Aattg1 alleles revealed that AaTTG1 is involved in the regulation of all five traits. A detailed analysis of the five traits showed striking phenotypic differences between A. alpina and A. thaliana such that trichome formation occurs also at later stages of leaf development and that root hairs form at non-root hair positions.ConclusionsThe evolutionary conservation of the regulation of the five traits by TTG1 on the one hand and the striking phenotypic differences make A. alpina a very interesting genetic model system to study the evolution of TTG1-dependent gene regulatory networks at a functional level.


Plant Physiology | 2014

Rapid Identification of a Natural Knockout Allele of ARMADILLO REPEAT-CONTAINING KINESIN1 That Causes Root Hair Branching by Mapping-By-Sequencing

Louai Rishmawi; Hequan Sun; Korbinian Schneeberger; Martin Hülskamp; Andrea Schrader

Mapping-by-sequencing identifies a naturally occurring variant of a kinesin that causes root hairs to branch. In Arabidopsis (Arabidopsis thaliana), branched root hairs are an indicator of defects in root hair tip growth. Among 62 accessions, one accession (Heiligkreuztal2 [HKT2.4]) displayed branched root hairs, suggesting that this accession carries a mutation in a gene of importance for tip growth. We determined 200- to 300-kb mapping intervals using a mapping-by-sequencing approach of F2 pools from crossings of HKT2.4 with three different accessions. The intersection of these mapping intervals was 80 kb in size featuring not more than 36 HKT2.4-specific single nucleotide polymorphisms, only two of which changed the coding potential of genes. Among them, we identified the causative single nucleotide polymorphism changing a splicing site in ARMADILLO REPEAT-CONTAINING KINESIN1. The applied strategies have the potential to complement statistical methods in high-throughput phenotyping studies using different natural accessions to identify causative genes for distinct phenotypes represented by only one or a few accessions.


Plant Signaling & Behavior | 2013

MIDGET cooperates with COP1 and SPA1 to repress flowering in Arabidopsis thaliana

Andrea Schrader; Joachim F. Uhrig

The life cycle of plants is strictly regulated by light, which directly influences the initiation of developmental programs such as photomorphogenesis of seedlings and induction of flowering. When environmental conditions are unsuitable, both processes are actively repressed by the action of COP1/SPA protein complexes which participate in ubiquitylation and subsequent degradation of transcription factors. We have shown recently that MIDGET (MID), a regulator of the TOPOISOMERASE VI complex, physically interacts with COP1 and is required for its function as suppressor of photomorphogenesis. Here we show that in Arabidopsis thaliana, the MID protein similarly plays a role in COP1/SPA1-controlled repression of flowering under short-day conditions.


Frontiers in Plant Science | 2017

The Second Intron Is Essential for the Transcriptional Control of the Arabidopsis thaliana GLABRA3 Gene in Leaves

Alexandra Friede; Bipei Zhang; Stefanie Herberth; Martina Pesch; Andrea Schrader; Martin Hülskamp

The GLABRA3 gene is a major regulator of trichome patterning in Arabidopsis thaliana. The regulatory regions important for the trichome-specific expression of GL3 have not been characterized yet. In this study, we used a combination of marker and rescue constructs to determine the relevant promoter regions. We demonstrate that a 1 kb 5′ region combined with the second intron is sufficient to rescue the trichome mutant phenotype of gl3 egl3 mutants. Swap experiments of the second intron suggest that it is not sufficient to generally enhance the expression level of GL3. This implies that the second intron contains regulatory regions for the temporal and spatial regulation of GL3. The corresponding GUS-marker constructs revealed trichome-specific expression in young trichomes.


BMC Plant Biology | 2016

A fast and simple LC-MS-based characterization of the flavonoid biosynthesis pathway for few seed(ling)s

Benjamin Jaegle; Miran Kalle Uroic; Xu Holtkotte; Christina Lucas; Andreas Ole Termath; Hans-Günther Schmalz; Marcel Bucher; Ute Hoecker; Martin Hülskamp; Andrea Schrader

Background(Pro)anthocyanidins are synthesized by the flavonoid biosynthesis pathway with multi-layered regulatory control. Methods for the analysis of the flavonoid composition in plants are well established for different purposes. However, they typically compromise either on speed or on depth of analysis.ResultsIn this work we combined and optimized different protocols to enable the analysis of the flavonoid biosynthesis pathway with as little as possible biological material. We chose core substances of this metabolic pathway that serve as a fingerprint to recognize alterations in the main branches of the pathway. We used a simplified sample preparation, two deuterated internal standards, a short and efficient LC separation, highly sensitive detection with tandem MS in multiple reaction monitoring (MRM) mode and hydrolytic release of the core substances to reduce complexity. The method was optimized for Arabidopsis thaliana seeds and seedlings. We demonstrate that one Col-0 seed/seedling is sufficient to obtain a fingerprint of the core substances of the flavonoid biosynthesis pathway. For comparative analysis of different genotypes, we suggest the use of 10 seed(lings). The analysis of Arabidopsis thaliana mutants affecting steps in the pathway revealed foreseen and unexpected alterations of the pathway. For example, HY5 was found to differentially regulate kaempferol in seeds vs. seedlings. Furthermore, our results suggest that COP1 is a master regulator of flavonoid biosynthesis in seedlings but not of flavonoid deposition in seeds.ConclusionsWhen sample numbers are high and the plant material is limited, this method effectively facilitates metabolic fingerprinting with one seed(ling), revealing shifts and differences in the pathway. Moreover the combination of extracted non-hydrolysed, extracted hydrolysed and non-extracted hydrolysed samples proved useful to deduce the class of derivative from which the individual flavonoids have been released.


Frontiers in Plant Science | 2018

Sub-epidermal Expression of ENHANCER OF TRIPTYCHON AND CAPRICE1 and Its Role in Root Hair Formation Upon Pi Starvation

Louai Rishmawi; Heike Wolff; Andrea Schrader; Martin Hülskamp

Root hair patterning is best studied in Arabidopsis thaliana. A pattern of root hair and non-root hair files is governed by a gene-regulatory network of activators and inhibitors. Under phosphate starvation conditions, extra root hairs are formed in non-root hair positions. This raises the question, whether and how this environmental stimulus is mediated by the known root hair gene network. In this study, we provide genetic and molecular data on the role of ETC1 in the phosphate starvation induced ectopic root hair formation. We show that the expression in the epidermis is irregular and reduced and that a new expression domain is induced in the sub-epidermis. By expressing ETC1 in the sub-epidermis, we show that this is sufficient to induce extra root hair formation in N-files. This suggests that the phosphate induced expressional switch from epidermal to epidermal plus sub-epidermal expression of ETC1 is one environmental input to the underlying patterning network.

Collaboration


Dive into the Andrea Schrader's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge