Andrea Spolaor
Ca' Foscari University of Venice
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Andrea Spolaor.
Journal of Analytical Atomic Spectrometry | 2012
Andrea Spolaor; Paul Vallelonga; Jacopo Gabrieli; Giulio Cozzi; Claude F. Boutron; Carlo Barbante
Iron is an element of great interest due to its role in primary production and in oceanic carbon cycle regulation, such that past changes in iron deposition may have influenced oceanic sequestration of atmospheric CO2 on millennial time scales. The behavior of iron in biological and environmental contexts depends strongly on its oxidation state. Solubility in water and the capacity to form complexes are just two important characteristics that are species dependent. Distinguishing between the two iron species, Fe(II) and Fe(III), is necessary to evaluate bioavailability, as Fe(II) is more soluble and therefore more readily available for phytoplankton uptake and growth. Here, we present a novel analytical method for iron speciation analysis using Collision Reaction Cell-Inductively Coupled Plasma-Mass Spectrometry (CRC-ICP-MS) and apply it to ice core samples from Talos Dome, Antarctica. The method detection limit is 0.01 ng g−1. A chelating resin, Ni-NTA Superflow, was used to separate the Fe species. At pH 2 the resin is capable of retaining Fe3+ with no retention of Fe2+. After the initial separation, we oxidized the Fe2+ using H2O2, and determined the Fe2+ concentration as the difference between the two measurements. Our preliminary results demonstrate higher Fe2+ concentrations during glacial periods than during interglacial periods. This elevated concentration of Fe2+ suggests that more iron was available for phytoplankton growth during the Last Glacial Maximum, than would be expected from measurements of proxies such as dust mass or total Fe.
Scientific Reports | 2016
Andrea Spolaor; Paul Vallelonga; Clara Turetta; Niccolò Maffezzoli; Giulio Cozzi; Jacopo Gabrieli; Carlo Barbante; Kumiko Goto-Azuma; Alfonso Saiz-Lopez; Carlos A. Cuevas; Dorthe Dahl-Jensen
Reconstructing the past variability of Arctic sea ice provides an essential context for recent multi-year sea ice decline, although few quantitative reconstructions cover the Holocene period prior to the earliest historical records 1,200 years ago. Photochemical recycling of bromine is observed over first-year, or seasonal, sea ice in so-called “bromine explosions” and we employ a 1-D chemistry transport model to quantify processes of bromine enrichment over first-year sea ice and depositional transport over multi-year sea ice and land ice. We report bromine enrichment in the Northwest Greenland Eemian NEEM ice core since the end of the Eemian interglacial 120,000 years ago, finding the maximum extension of first-year sea ice occurred approximately 9,000 years ago during the Holocene climate optimum, when Greenland temperatures were 2 to 3 °C above present values. First-year sea ice extent was lowest during the glacial stadials suggesting complete coverage of the Arctic Ocean by multi-year sea ice. These findings demonstrate a clear relationship between temperature and first-year sea ice extent in the Arctic and suggest multi-year sea ice will continue to decline as polar amplification drives Arctic temperatures beyond the 2 °C global average warming target of the recent COP21 Paris climate agreement.
Journal of Analytical Atomic Spectrometry | 2014
Žilvinas Ežerinskis; Andrea Spolaor; Torben Kirchgeorg; Giulio Cozzi; Paul Vallelonga; Helle A. Kjær; Justina Šapolaitė; Carlo Barbante; Rūta Druteikienė
The environmental radiation background has increased in the last century due to human nuclear activities and in this context 129I may be used to evaluate the anthropogenic contribution to global nuclear contamination. We present a fast and novel method for iodine-129 measurements. Coupling ion chromatography and inductively coupled plasma sector field mass spectrometry (IC-ICP-SFMS) allows the determination of iodine-129 at picogram per gram levels. The capability of the Dionex IONPAC® AS16 column to retain iodine species in the absence of NaOH has been used to pre-concentrate 5 mL samples. Although 129I suffers from isobaric spectral interference due to the presence of 129Xe, the IC-ICP-SFMS technique allows 129I to be determined by removing all other isobaric interferents. Furthermore, the 129Xe interference is sufficiently small and stable to be treated as a background correction. This strategy permits the evaluation of 129I speciation at sub-picogram per gram levels with a limit of detection (LOD) of 0.7 pg g−1. Thus the range of possible applications of this technique is expanded to low-concentration environmental samples such as polar snow. Preliminary results obtained from Greenland (NEEM) snow pit samples confirm its applicability in environmental research.
Geografia Fisica E Dinamica Quaternaria | 2012
Nota Breve; Paolo Gabrielli; Carlo Barbante; Luca Carturan; Giulio Cozzi; Giancarlo Dalla Fontana; Roberto Dinale; Gianfranco Dragà; Jacopo Gabrieli; Natalie Kehrwald; Volkmar Mair; Vladimir Mikhalenko; Gianni Piffer; Mirko Rinaldi; Roberto Seppi; Andrea Spolaor; Lonnie G. Thompson; David Tonidandel
During autumn 2011 we extracted the first ice cores drilled to bedrock in the eastern European Alps from a new drilling site on the glacier Alto dell’Ortles (3859 m, South Tyrol, Italy). Direct ice core observations and englacial temperature measurements provide evidence of the concomitant presence of shallow temperate firn and deep cold ice layers (ice below the pressure melting point). To the best of our knowledge, this is the first cold ice observed within a glacier of the eastern European Alps. These ice layers probably represent a unique remnant from the colder climate occurring before ~1980 AD. We conclude that the glacier Alto dell’Ortles is now changing from a cold to a temperate state. The occurrence of cold ice layers in this glacier enhances the probability that a climatic and environmental record is fully preserved in the recovered ice cores.
Rendiconti Lincei-scienze Fisiche E Naturali | 2016
Andrea Spolaor; Elena Barbaro; Jean Marc Christille; Torben Kirchgeorg; Fabio Giardi; David Cappelletti; Clara Turetta; Andrea Bernagozzi; Mats P. Björkman; Enzo Bertolini; Carlo Barbante
Understanding and monitoring the evolution of annual snow is an important aspect of cryosphere research. Changes in physical proprieties such as hardness, presence of melt layers, or the shape and size of crystals can completely modify the robustness, propriety and quality of the snow. Evaluating these changes can inform the study and prediction of avalanches. The annual snow layer is also a sink for several compounds and elements. In the polar environment, many compounds can be accumulated during winter depositions, especially during the polar night. During the spring, the combination of solar radiation and the melting of annual snow can release these compounds and elements into the atmosphere and groundwater. An in-depth investigation of the evolution of the first meter of the annual snow layer was conducted in the glacier of Austre Brøggerbreen, Svalbard, between the 27th of March and the 31st of May, in concomitance with the start of the melting phase. The present monitoring study mainly aimed to evaluate changes in the thermal profile and water content during the formation of a new ice layer as well as the re-allocation of the total dissolved salts in the different snow layers.
Nature Communications | 2018
Simon Schüpbach; Hubertus Fischer; Matthias Bigler; Tobias Erhardt; Gideon Gfeller; Daiana Leuenberger; Olivia Mini; Robert Mulvaney; Nerilie J. Abram; Louise G. Fleet; M. M. Frey; Erik R. Thomas; Anders Svensson; Dorthe Dahl-Jensen; E. Kettner; Helle A. Kjær; Inger K Seierstad; Jørgen Peder Steffensen; Sune Olander Rasmussen; Paul Vallelonga; Mai Winstrup; Anna Wegner; Birthe Twarloh; K. Wolff; K. Schmidt; Kumiko Goto-Azuma; Takayuki Kuramoto; Motohiro Hirabayashi; J. Uetake; J. Zheng
The Northern Hemisphere experienced dramatic changes during the last glacial, featuring vast ice sheets and abrupt climate events, while high northern latitudes during the last interglacial (Eemian) were warmer than today. Here we use high-resolution aerosol records from the Greenland NEEM ice core to reconstruct the environmental alterations in aerosol source regions accompanying these changes. Separating source and transport effects, we find strongly reduced terrestrial biogenic emissions during glacial times reflecting net loss of vegetated area in North America. Rapid climate changes during the glacial have little effect on terrestrial biogenic aerosol emissions. A strong increase in terrestrial dust emissions during the coldest intervals indicates higher aridity and dust storm activity in East Asian deserts. Glacial sea salt aerosol emissions in the North Atlantic region increase only moderately (50%), likely due to sea ice expansion. Lower aerosol concentrations in Eemian ice compared to the Holocene are mainly due to shortened atmospheric residence time, while emissions changed little.Past climate changes in Greenland ice were accompanied by large aerosol concentration changes. Here, the authors show that by correcting for transport effects, reliable source changes for biogenic aerosol from North America, sea salt aerosol from the North Atlantic, and dust from East Asian deserts can be derived.
Nature Communications | 2018
Carlos A. Cuevas; Niccolò Maffezzoli; Juan Pablo Corella; Andrea Spolaor; Paul Vallelonga; Helle A. Kjær; Marius Simonsen; Mai Winstrup; B. M. Vinther; Christopher Horvat; Rafael P. Fernandez; Douglas E. Kinnison; Jean-Francois Lamarque; Carlo Barbante; Alfonso Saiz-Lopez
Atmospheric iodine causes tropospheric ozone depletion and aerosol formation, both of which have significant climate impacts, and is an essential dietary element for humans. However, the evolution of atmospheric iodine levels at decadal and centennial scales is unknown. Here, we report iodine concentrations in the RECAP ice-core (coastal East Greenland) to investigate how atmospheric iodine levels in the North Atlantic have evolved over the past 260 years (1750–2011), this being the longest record of atmospheric iodine in the Northern Hemisphere. The levels of iodine tripled from 1950 to 2010. Our results suggest that this increase is driven by anthropogenic ozone pollution and enhanced sub-ice phytoplankton production associated with the recent thinning of Arctic sea ice. Increasing atmospheric iodine has accelerated ozone loss and has considerably enhanced iodine transport and deposition to the Northern Hemisphere continents. Future climate and anthropogenic forcing may continue to amplify oceanic iodine emissions with potentially significant health and environmental impacts at global scale.Despite its chemical importance, the evolution of atmospheric iodine concentrations over time is unknown. Here, the authors show that North Atlantic atmospheric iodine levels have tripled since 1950, and propose ozone pollution and enhanced biological production Arctic sea ice thinning as a primary driver.
Environmental Pollution | 2018
Marco Vecchiato; Elena Barbaro; Andrea Spolaor; Francois Burgay; Carlo Barbante; Rossano Piazza; Andrea Gambaro
Polar regions are fragile ecosystems threatened by both long-range pollution and local human contamination. In this context, the environmental distribution of the Personal Care Products (PCPs) represent a major knowledge gap. Following preliminary Antarctic studies, Fragrance Materials (FMs) were analyzed in the seawater and snow collected in the area of Ny-Ålesund, Svalbard, to investigate local and long-range contamination. Polycyclic Aromatic Hydrocarbons (PAHs), including Retene, were determined in parallel to help the identification of the governing processes. Concentrations of FMs up to 72 ng L-1 were detected in the surface snow near the settlement and at increasing distances, in relation to the prevailing winds. PAHs follow a similar scheme, with levels of Retene up to 1.8 μg L-1, likely deriving from the occurrence of this compound in the coal dust due to the previous mining activities in the area. The snow seasonal deposition of FMs and PAHs was estimated in a snowpit dug at the top of the Austre Brøggerbreen glacier, indicating the long-range atmospheric transport (LRAT) of these compounds.
Climate of The Past Discussions | 2018
Niccolò Maffezzoli; Paul Vallelonga; Ross Edwards; Alfonso Saiz-Lopez; Clara Turetta; Helle A. Kjær; Carlo Barbante; B. M. Vinther; Andrea Spolaor
Although it has been demonstrated that the speed and magnitude of the recent Arctic sea ice decline is unprecedented for the past 1450 years, few records are available to provide a paleoclimate context for Arctic sea ice extent. Bromine enrichment in ice cores has been suggested to indicate the extent of newly formed sea ice areas. Despite the similarities among sea ice indicators and ice core bromine enrichment records, uncertainties still exist regarding the quantitative linkages between bromine reactive chemistry and the first-year sea ice surfaces. Here we present a 120 000-year record of bromine enrichment from the RECAP (REnland ice CAP) ice core, coastal east Greenland, and interpret it as a record of first-year sea ice. We compare it to existing sea ice records from marine cores and tentatively reconstruct past sea ice conditions in the North Atlantic as far north as the Fram Strait (50–85 N). Our interpretation implies that during the last deglaciation, the transition from multi-year to first-year sea ice started at ∼ 17.5 ka, synchronously with sea ice reductions observed in the eastern Nordic Seas and with the increase in North Atlantic ocean temperature. First-year sea ice reached its maximum at 12.4–11.8 ka during the Younger Dryas, after which openwater conditions started to dominate, consistent with sea ice records from the eastern Nordic Seas and the North Icelandic shelf. Our results show that over the last 120 000 years, multiyear sea ice extent was greatest during Marine Isotope Stage (MIS) 2 and possibly during MIS 4, with more extended firstyear sea ice during MIS 3 and MIS 5. Sea ice extent during the Holocene (MIS 1) has been less than at any time in the last 120 000 years.
Chemosphere | 2018
Andrea Spolaor; Hélène Angot; Marco Roman; Aurélien Dommergue; Claudio Scarchilli; Massimiliano Vardè; Massimo Del Guasta; Xanthi Pedeli; Cristiano Varin; Francesca Sprovieri; Olivier Magand; Michel Legrand; Carlo Barbante; Warren Raymond Lee Cairns
The Antarctic Plateau snowpack is an important environment for the mercury geochemical cycle. We have extensively characterized and compared the changes in surface snow and atmospheric mercury concentrations that occur at Dome C. Three summer sampling campaigns were conducted between 2013 and 2016. The three campaigns had different meteorological conditions that significantly affected mercury deposition processes and its abundance in surface snow. In the absence of snow deposition events, the surface mercury concentration remained stable with narrow oscillations, while an increase in precipitation results in a higher mercury variability. The Hg concentrations detected confirm that snowfall can act as a mercury atmospheric scavenger. A high temporal resolution sampling experiment showed that surface concentration changes are connected with the diurnal solar radiation cycle. Mercury in surface snow is highly dynamic and it could decrease by up to 90% within 4/6 h. A negative relationship between surface snow mercury and atmospheric concentrations has been detected suggesting a mutual dynamic exchange between these two environments. Mercury concentrations were also compared with the Br concentrations in surface and deeper snow, results suggest that Br could have an active role in Hg deposition, particularly when air masses are from coastal areas. This research presents new information on the presence of Hg in surface and deeper snow layers, improving our understanding of atmospheric Hg deposition to the snow surface and the possible role of re-emission on the atmospheric Hg concentration.