Andrea Strazzulli
National Research Council
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Andrea Strazzulli.
Proceedings of the National Academy of Sciences of the United States of America | 2012
Fiona Cuskin; James E. Flint; Tracey M. Gloster; Carl Morland; Arnaud Baslé; Bernard Henrissat; Pedro M. Coutinho; Andrea Strazzulli; Alexandra S. Solovyova; Gideon J. Davies; Harry J. Gilbert
Noncatalytic carbohydrate binding modules (CBMs) are components of glycoside hydrolases that attack generally inaccessible substrates. CBMs mediate a two- to fivefold elevation in the activity of endo-acting enzymes, likely through increasing the concentration of the appended enzymes in the vicinity of the substrate. The function of CBMs appended to exo-acting glycoside hydrolases is unclear because their typical endo-binding mode would not fulfill a targeting role. Here we show that the Bacillus subtilis exo-acting β-fructosidase SacC, which specifically hydrolyses levan, contains the founding member of CBM family 66 (CBM66). The SacC-derived CBM66 (BsCBM66) targets the terminal fructosides of the major fructans found in nature. The crystal structure of BsCBM66 in complex with ligands reveals extensive interactions with the terminal fructose moiety (Fru-3) of levantriose but only limited hydrophobic contacts with Fru-2, explaining why the CBM displays broad specificity. Removal of BsCBM66 from SacC results in a ∼100-fold reduction in activity against levan. The truncated enzyme functions as a nonspecific β-fructosidase displaying similar activity against β-2,1– and β-2,6–linked fructans and their respective fructooligosaccharides. Conversely, appending BsCBM66 to BT3082, a nonspecific β-fructosidase from Bacteroides thetaiotaomicron, confers exolevanase activity on the enzyme. We propose that BsCBM66 confers specificity for levan, a branched fructan, through an “avidity” mechanism in which the CBM and the catalytic module target the termini of different branches of the same polysaccharide molecule. This report identifies a unique mechanism by which CBMs modulate enzyme function, and shows how specificity can be tailored by integrating nonspecific catalytic and binding modules into a single enzyme.
Microbial Cell Factories | 2012
Teja Sirec; Andrea Strazzulli; Rachele Isticato; Maurilio De Felice; Marco Moracci; Ezio Ricca
BackgroundThe Bacillus subtilis spore has long been used as a surface display system with potential applications in a variety of fields ranging from mucosal vaccine delivery, bioremediation and biocatalyst development. More recently, a non-recombinant approach of spore display has been proposed and heterologous proteins adsorbed on the spore surface. We used the well-characterized β-galactosidase from the thermoacidophilic bacterium Alicyclobacillus acidocaldarius as a model to study enzyme adsorption, to analyze whether and how spore-adsorption affects the properties of the enzyme and to improve the efficiency of the process.ResultsWe report that purified β- galactosidase molecules were adsorbed to purified spores of a wild type strain of B. subtilis retaining ca. 50% of their enzymatic activity. Optimal pH and temperature of the enzyme were not altered by the presence of the spore, that protected the adsorbed β- galactosidase from exposure to acidic pH conditions. A collection of mutant strains of B. subtilis lacking a single or several spore coat proteins was compared to the isogenic parental strain for the adsorption efficiency. Mutants with an altered outermost spore layer (crust) were able to adsorb 60-80% of the enzyme, while mutants with a severely altered or totally lacking outer coat adsorbed 100% of the β- galactosidase molecules present in the adsorption reaction.ConclusionOur results indicate that the spore surface structures, the crust and the outer coat layer, have an negative effect on the adhesion of the β- galactosidase. Electrostatic forces, previously suggested as main determinants of spore adsorption, do not seem to play an essential role in the spore-β- galactosidase interaction. The analysis of mutants with altered spore surface has shown that the process of spore adsorption can be improved and has suggested that such improvement has to be based on a better understanding of the spore surface structure. Although the molecular details of spore adsorption have not been fully elucidated, the efficiency of the process and the pH-stability of the adsorbed molecules, together with the well documented robustness and safety of spores of B. subtilis, propose the spore as a novel, non-recombinant system for enzyme display.
Journal of Biological Chemistry | 2010
Beatrice Cobucci-Ponzano; Vincenzo Aurilia; Gennaro Riccio; Bernard Henrissat; Pedro M. Coutinho; Andrea Strazzulli; Anna Padula; Maria Michela Corsaro; Giuseppina Pieretti; Gabriella Pocsfalvi; Immacolata Fiume; Raffaele Cannio; Mosè Rossi; Marco Moracci
Carbohydrate active enzymes (CAZymes) are a large class of enzymes, which build and breakdown the complex carbohydrates of the cell. On the basis of their amino acid sequences they are classified in families and clans that show conserved catalytic mechanism, structure, and active site residues, but may vary in substrate specificity. We report here the identification and the detailed molecular characterization of a novel glycoside hydrolase encoded from the gene sso1353 of the hyperthermophilic archaeon Sulfolobus solfataricus. This enzyme hydrolyzes aryl beta-gluco- and beta-xylosides and the observation of transxylosylation reactions products demonstrates that SSO1353 operates via a retaining reaction mechanism. The catalytic nucleophile (Glu-335) was identified through trapping of the 2-deoxy-2-fluoroglucosyl enzyme intermediate and subsequent peptide mapping, while the general acid/base was identified as Asp-462 through detailed mechanistic analysis of a mutant at that position, including azide rescue experiments. SSO1353 has detectable homologs of unknown specificity among Archaea, Bacteria, and Eukarya and shows distant similarity to the non-lysosomal bile acid beta-glucosidase GBA2 also known as glucocerebrosidase. On the basis of our findings we propose that SSO1353 and its homologs are classified in a new CAZy family, named GH116, which so far includes beta-glucosidases (EC 3.2.1.21), beta-xylosidases (EC 3.2.1.37), and glucocerebrosidases (EC 3.2.1.45) as known enzyme activities.Carbohydrate active enzymes (CAZymes) are a large class of enzymes, which build and breakdown the complex carbohydrates of the cell. On the basis of their amino acid sequences they are classified in families and clans that show conserved catalytic mechanism, structure, and active site residues, but may vary in substrate specificity. We report here the identification and the detailed molecular characterization of a novel glycoside hydrolase encoded from the gene sso1353 of the hyperthermophilic archaeon Sulfolobus solfataricus. This enzyme hydrolyzes aryl β-gluco- and β-xylosides and the observation of transxylosylation reactions products demonstrates that SSO1353 operates via a retaining reaction mechanism. The catalytic nucleophile (Glu-335) was identified through trapping of the 2-deoxy-2-fluoroglucosyl enzyme intermediate and subsequent peptide mapping, while the general acid/base was identified as Asp-462 through detailed mechanistic analysis of a mutant at that position, including azide rescue experiments. SSO1353 has detectable homologs of unknown specificity among Archaea, Bacteria, and Eukarya and shows distant similarity to the non-lysosomal bile acid β-glucosidase GBA2 also known as glucocerebrosidase. On the basis of our findings we propose that SSO1353 and its homologs are classified in a new CAZy family, named GH116, which so far includes β-glucosidases (EC 3.2.1.21), β-xylosidases (EC 3.2.1.37), and glucocerebrosidases (EC 3.2.1.45) as known enzyme activities.
Nature Chemical Biology | 2016
David C. Briggs; Takako Yoshida-Moriguchi; Tianqing Zheng; David Venzke; Mary E. Anderson; Andrea Strazzulli; Marco Moracci; Liping Yu; Erhard Hohenester; Kevin P. Campbell
Dystroglycan is a highly glycosylated extracellular matrix receptor with essential functions in skeletal muscle and the nervous system. Reduced matrix binding by α-dystroglycan (α-DG) due to perturbed glycosylation is a pathological feature of several forms of muscular dystrophy. Like-acetylglucosaminyltransferase (LARGE) synthesizes the matrix-binding heteropolysaccharide [-glucuronic acid-β1,3-xylose-α1,3-]n. Using a dual exoglycosidase digestion, we confirm that this polysaccharide is present on native α-DG from skeletal muscle. The atomic details of matrix binding were revealed by a high-resolution crystal structure of laminin G-like (LG) domains 4-5 of laminin α2 bound to a LARGE-synthesized oligosaccharide. A single glucuronic acid-β1,3-xylose disaccharide repeat straddles a Ca2+ ion in the LG4 domain, with oxygen atoms from both sugars replacing Ca2+-bound water molecules. The chelating binding mode accounts for the high affinity of this protein-carbohydrate interaction. These results reveal a novel mechanism of carbohydrate recognition and provide a structural framework for elucidating the mechanisms underlying muscular dystrophy.
Biochimie | 2010
Beatrice Cobucci-Ponzano; Fiorella Conte; Andrea Strazzulli; Clemente Capasso; Immacolata Fiume; Gabriella Pocsfalvi; Mosè Rossi; Marco Moracci
α-Mannosidases, important enzymes in the N-glycan processing and degradation in Eukaryotes, are frequently found in the genome of Bacteria and Archaea in which their function is still largely unknown. The α-mannosidase from the hyperthermophilic Crenarchaeon Sulfolobus solfataricus has been identified and purified from cellular extracts and its gene has been cloned and expressed in Escherichia coli. The gene, belonging to retaining GH38 mannosidases of the carbohydrate active enzyme classification, is abundantly expressed in this Archaeon. The purified α-mannosidase activity depends on a single Zn(2+) ion per subunit is inhibited by swainsonine with an IC(50) of 0.2 mM. The molecular characterization of the native and recombinant enzyme, named Ssα-man, showed that it is highly specific for α-mannosides and α(1,2), α(1,3), and α(1,6)-D-mannobioses. In addition, the enzyme is able to demannosylate Man(3)GlcNAc(2) and Man(7)GlcNAc(2) oligosaccharides commonly found in N-glycosylated proteins. More interestingly, Ssα-man removes mannose residues from the glycosidic moiety of the bovine pancreatic ribonuclease B, suggesting that it could process mannosylated proteins also in vivo. This is the first evidence that archaeal glycosidases are involved in the direct modification of glycoproteins.
Enzyme and Microbial Technology | 2015
Beatrice Cobucci-Ponzano; Andrea Strazzulli; Roberta Iacono; Giuseppe Masturzo; Rosa Giglio; Mosè Rossi; Marco Moracci
The biotransformation of lignocellulose biomasses into fermentable sugars is a very complex procedure including, as one of the most critical steps, the (hemi) cellulose hydrolysis by specific enzymatic cocktails. We explored here, the potential of stable glycoside hydrolases from thermophilic organisms, so far not used in commercial enzymatic preparations, for the conversion of glucuronoxylan, the major hemicellulose of several energy crops. Searches in the genomes of thermophilic bacteria led to the identification, efficient production, and detailed characterization of novel xylanase and α-glucuronidase from Alicyclobacillus acidocaldarius (GH10-XA and GH67-GA, respectively) and a α-glucuronidase from Caldicellulosiruptor saccharolyticus (GH67-GC). Remarkably, GH10-XA, if compared to other thermophilic xylanases from this family, coupled good specificity on beechwood xylan and the best stability at 65 °C (3.5 days). In addition, GH67-GC was the most stable α-glucuronidases from this family and the first able to hydrolyse both aldouronic acid and aryl-α-glucuronic acid substrates. These enzymes, led to the very efficient hydrolysis of beechwood xylan by using 7- to 9-fold less protein (concentrations <0.3 μM) and in much less reaction time (2h vs 12h) if compared to other known biotransformations catalyzed by thermophilic enzymes. In addition, remarkably, together with a thermophilic β-xylosidase, they catalyzed the production of xylose from the smart cooking pre-treated biomass of one of the most promising energy crops for second generation biorefineries. We demonstrated that search by the CAZy Data Bank of currently available genomes and detailed enzymatic characterization of recombinant enzymes allow the identification of glycoside hydrolases with novel and interesting properties and applications.
Methods in Enzymology | 2012
Beatrice Cobucci-Ponzano; Giuseppe Perugino; Andrea Strazzulli; Mosè Rossi; Marco Moracci
Glycosynthases are engineered glycoside hydrolases that in suitable reaction conditions promote the synthesis of oligosaccharides with exquisite stereoselectivity and enhanced regioselectivity, if compared to traditional chemical methods. This approach was demonstrated to be successful in a number of cases including β-glycosynthases acting at the termini or within an oligosaccharide chain (exo- and endo-glycosynthases, respectively) and, more recently, α-glycosynthases. This led to the production of a vast repertoire of products that include poly- and oligosaccharides, glycoconjugates, and glycopeptides. These molecules can be used as ligands of glycoside hydrolases, for the characterization of therapeutic enzymes, and as leads of drugs for the pharmaceutical industry. In this panorama, hyperthermophilic organisms, which thrive at temperatures as high as 80°C, which usually impede the growth of other living forms, have been used in the development of interesting novel glycosynthases. In fact, the extreme stability of these catalysts to extremes of pH and high concentrations of organics has allowed the exploration of novel reaction conditions, revealing new avenues for enzyme-catalyzed oligosaccharide synthesis.
Oncotarget | 2017
Giancarlo Vecchio; Alessia Parascandolo; Chiara Allocca; Clara Ugolini; Fulvio Basolo; Marco Moracci; Andrea Strazzulli; Beatrice Cobucci-Ponzano; Mikko O. Laukkanen; Maria Domenica Castellone; Nobuo Tsuchida
Glycans containing α-L-fucose participate in diverse interactions between cells and extracellular matrix. High glycan expression on cell surface is often associated with neoplastic progression. The lysosomal exoenzyme, α-L-fucosidase-1 (FUCA-1) removes fucose residues from glycans. The FUCA-1 gene is down-regulated in highly aggressive and metastatic human tumors. However, the role of FUCA-1 in tumor progression remains unclear. It is speculated that its inactivation perturbs glycosylation of proteins involved in cell adhesion and promotes cancer. FUCA-1 expression of various thyroid normal and cancer tissues assayed by immunohistochemical (IHC) staining was high in normal thyroids and papillary thyroid carcinomas (PTC), whereas it progressively decreased in poorly differentiated, metastatic and anaplastic thyroid carcinomas (ATC). FUCA-1 mRNA expression from tissue samples and cell lines and protein expression levels and enzyme activity in thyroid cancer cell lines paralleled those of IHC staining. Furthermore, ATC-derived 8505C cells adhesion to human E-selectin and HUVEC cells was inhibited by bovine α-L-fucosidase or Lewis antigens, thus pointing to an essential role of fucose residues in the adhesive phenotype of this cancer cell line. Finally, 8505C cells transfected with a FUCA-1 containing plasmid displayed a less invasive phenotype versus the parental 8505C. These results demonstrate that FUCA-1 is down-regulated in ATC compared to PTC and normal thyroid tissues and cell lines. As shown for other human cancers, the down-regulation of FUCA-1 correlates with increased aggressiveness of the cancer type. This is the first report indicating that the down-regulation of FUCA-1 is related to the increased aggressiveness of thyroid cancer.
Glycobiology | 2017
Andrea Strazzulli; Beatrice Cobucci-Ponzano; Sara Carillo; Emiliano Bedini; Maria Michela Corsaro; Gabriella Pocsfalvi; Stephen G. Withers; Mosè Rossi; Marco Moracci
Chemo-enzymatic synthesis of oligosaccharides exploits the diversity of glycosidases and their ability to promote transglycosylation reactions in parallel with hydrolysis. Methods to increase the transglycosylation/hydrolysis ratio include site-directed mutagenesis and medium modification. The former approach was successful in several cases and has provided the best synthetic yields with glycosynthases-mutants at the catalytic nucleophile position that promote transglycosylation with high efficiency, but do not hydrolyze the oligosaccharide products. Several glycosidases have proven recalcitrant to this conversion, thus alternative methods to increase the transglycosylation/hydrolysis ratio by mutation would be very useful. Here we show that a mutant of a β-galactosidase from Alicyclobacillus acidocaldarius in an invariant residue in the active site of the enzymes of this family (glutamic acid 361) carries out efficient transglycosylation reactions on different acceptors only in the presence of external ions with yields up to 177-fold higher than that of the wild type. This is the first case in which sodium azide and sodium formate in combination with site-directed mutagenesis have been used to introduce transglycosylation activity into a glycosidase. These observations will hopefully guide further efforts to generate useful synthases.
Archive | 2013
Beatrice Cobucci-Ponzano; Elena Ionata; Francesco La Cara; Alessandra Morana; Maria Carmina Ferrara; Luisa Maurelli; Andrea Strazzulli; Rosa Giglio; Marco Moracci
The second generation bioethanol represents a main challenge in global efforts to utilize renewable resources rather than fossil fuels. However, the close association of cellulose and hemicelluloses to lignin in the plant cell wall makes it difficult to degrade lignocellulose into fermentable sugars. Consequently, pretreatments are necessary to make the polysaccharides more accessible to the enzymes, but the high temperature and extreme pH conditions required give rise to problems when using conventional enzymes in the saccharification step (Galbe and Zacchi 2002). Microorganisms thriving in habitats characterized by harsh conditions, and the enzymes derived therein, represent a helpful tool in the development of bioethanol production processes. In fact, they allow bioconversions at non-conventional conditions under which common biocatalysts are denatured. The use of high operational temperatures allows energy savings by reducing the cooling cost after high temperature pretreatments, and, in ethanol production, thermophilic conditions permit ethanol evaporation allowing harvest during fermentation.