Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andrea T. Hooper is active.

Publication


Featured researches published by Andrea T. Hooper.


Nature Medicine | 2002

Revascularization of ischemic tissues by PlGF treatment, and inhibition of tumor angiogenesis, arthritis and atherosclerosis by anti-Flt1

Aernout Luttun; Marc Tjwa; Lieve Moons; Yan Wu; Anne Angelillo-Scherrer; Fang Liao; Janice A. Nagy; Andrea T. Hooper; Josef Priller; Bert De Klerck; Veerle Compernolle; Evis Daci; Peter Bohlen; Mieke Dewerchin; Jean Marc Herbert; Roy A. Fava; Patrick Matthys; Geert Carmeliet; Desire Collen; Harold F. Dvorak; Daniel J. Hicklin; Peter Carmeliet

The therapeutic potential of placental growth factor (PlGF) and its receptor Flt1 in angiogenesis is poorly understood. Here, we report that PlGF stimulated angiogenesis and collateral growth in ischemic heart and limb with at least a comparable efficiency to vascular endothelial growth factor (VEGF). An antibody against Flt1 suppressed neovascularization in tumors and ischemic retina, and angiogenesis and inflammatory joint destruction in autoimmune arthritis. Anti-Flt1 also reduced atherosclerotic plaque growth and vulnerability, but the atheroprotective effect was not attributable to reduced plaque neovascularization. Inhibition of VEGF receptor Flk1 did not affect arthritis or atherosclerosis, indicating that inhibition of Flk1-driven angiogenesis alone was not sufficient to halt disease progression. The anti-inflammatory effects of anti-Flt1 were attributable to reduced mobilization of bone marrow–derived myeloid progenitors into the peripheral blood; impaired infiltration of Flt1-expressing leukocytes in inflamed tissues; and defective activation of myeloid cells. Thus, PlGF and Flt1 constitute potential candidates for therapeutic modulation of angiogenesis and inflammation.


Journal of Clinical Investigation | 2008

CD133 expression is not restricted to stem cells, and both CD133+ and CD133– metastatic colon cancer cells initiate tumors

Sergey V. Shmelkov; Jason M. Butler; Andrea T. Hooper; Adília Hormigo; Jared S Kushner; Till Milde; Ryan St Clair; Muhamed Baljevic; Ian White; David K. Jin; Amy Chadburn; Andrew J. Murphy; David M. Valenzuela; Nicholas W. Gale; Gavin Thurston; George D. Yancopoulos; Michael I. D’Angelica; Nancy E. Kemeny; David Lyden; Shahin Rafii

Colon cancer stem cells are believed to originate from a rare population of putative CD133+ intestinal stem cells. Recent publications suggest that a small subset of colon cancer cells expresses CD133, and that only these CD133+ cancer cells are capable of tumor initiation. However, the precise contribution of CD133+ tumor-initiating cells in mediating colon cancer metastasis remains unknown. Therefore, to temporally and spatially track the expression of CD133 in adult mice and during tumorigenesis, we generated a knockin lacZ reporter mouse (CD133lacZ/+), in which the expression of lacZ is driven by the endogenous CD133 promoters. Using this model and immunostaining, we discovered that CD133 expression in colon is not restricted to stem cells; on the contrary, CD133 is ubiquitously expressed on differentiated colonic epithelium in both adult mice and humans. Using Il10-/-CD133lacZ mice, in which chronic inflammation in colon leads to adenocarcinomas, we demonstrated that CD133 is expressed on a full gamut of colonic tumor cells, which express epithelial cell adhesion molecule (EpCAM). Similarly, CD133 is widely expressed by human primary colon cancer epithelial cells, whereas the CD133- population is composed mostly of stromal and inflammatory cells. Conversely, CD133 expression does not identify the entire population of epithelial and tumor-initiating cells in human metastatic colon cancer. Indeed, both CD133+ and CD133- metastatic tumor subpopulations formed colonospheres in in vitro cultures and were capable of long-term tumorigenesis in a NOD/SCID serial xenotransplantation model. Moreover, metastatic CD133- cells form more aggressive tumors and express typical phenotypic markers of cancer-initiating cells, including CD44 (CD44+CD24-), whereas the CD133+ fraction is composed of CD44lowCD24+ cells. Collectively, our data suggest that CD133 expression is not restricted to intestinal stem or cancer-initiating cells, and during the metastatic transition, CD133+ tumor cells might give rise to the more aggressive CD133(- )subset, which is also capable of tumor initiation in NOD/SCID mice.


Cell Stem Cell | 2010

Endothelial cells are essential for the self-renewal and repopulation of Notch-dependent hematopoietic stem cells

Jason M. Butler; Daniel J. Nolan; Eva L. Vertes; Barbara Varnum-Finney; Hideki Kobayashi; Andrea T. Hooper; Marco Seandel; Koji Shido; Ian A. White; Mariko Kobayashi; Larry Witte; Chad May; Carrie J. Shawber; Yuki Kimura; Jan Kitajewski; Zev Rosenwaks; Irwin D. Bernstein; Shahin Rafii

Bone marrow endothelial cells (ECs) are essential for reconstitution of hematopoiesis, but their role in self-renewal of long-term hematopoietic stem cells (LT-HSCs) is unknown. We have developed angiogenic models to demonstrate that EC-derived angiocrine growth factors support in vitro self-renewal and in vivo repopulation of authentic LT-HSCs. In serum/cytokine-free cocultures, ECs, through direct cellular contact, stimulated incremental expansion of repopulating CD34(-)Flt3(-)cKit(+)Lineage(-)Sca1(+) LT-HSCs, which retained their self-renewal ability, as determined by single-cell and serial transplantation assays. Angiocrine expression of Notch ligands by ECs promoted proliferation and prevented exhaustion of LT-HSCs derived from wild-type, but not Notch1/Notch2-deficient, mice. In transgenic notch-reporter (TNR.Gfp) mice, regenerating TNR.Gfp(+) LT-HSCs were detected in cellular contact with sinusoidal ECs. Interference with angiocrine, but not perfusion, function of SECs impaired repopulation of TNR.Gfp(+) LT-HSCs. ECs establish an instructive vascular niche for clinical-scale expansion of LT-HSCs and a cellular platform to identify stem cell-active trophogens.


Cell Stem Cell | 2009

Engraftment and Reconstitution of Hematopoiesis Is Dependent on VEGFR2-Mediated Regeneration of Sinusoidal Endothelial Cells

Andrea T. Hooper; Jason M. Butler; Daniel J. Nolan; Andrea Kranz; Kaoruko Iida; Mariko Kobayashi; Hans Georg Kopp; Koji Shido; Isabelle Petit; Kilangsungla Yanger; Daylon James; Larry Witte; Zhenping Zhu; Yan Wu; Bronislaw Pytowski; Z. Rosenwaks; Vivek Mittal; Thomas N. Sato; Shahin Rafii

Myelosuppression damages the bone marrow (BM) vascular niche, but it is unclear how regeneration of bone marrow vessels contributes to engraftment of transplanted hematopoietic stem and progenitor cells (HSPCs) and restoration of hematopoiesis. We found that chemotherapy and sublethal irradiation induced minor regression of BM sinusoidal endothelial cells (SECs), while lethal irradiation induced severe regression of SECs and required BM transplantation (BMT) for regeneration. Within the BM, VEGFR2 expression specifically demarcated a continuous network of arterioles and SECs, with arterioles uniquely expressing Sca1 and SECs uniquely expressing VEGFR3. Conditional deletion of VEGFR2 in adult mice blocked regeneration of SECs in sublethally irradiated animals and prevented hematopoietic reconstitution. Similarly, inhibition of VEGFR2 signaling in lethally irradiated wild-type mice rescued with BMT severely impaired SEC reconstruction and prevented engraftment and reconstitution of HSPCs. Therefore, regeneration of SECs via VEGFR2 signaling is essential for engraftment of HSPCs and restoration of hematopoiesis.


Oncogene | 2005

Expression and function of vascular endothelial growth factor receptor-1 on human colorectal cancer cells.

Fan Fan; Jane S. Wey; Marya F. McCarty; Anna Belcheva; Wenbiao Liu; Todd W. Bauer; Ray Somcio; Yan Wu; Andrea T. Hooper; Daniel J. Hicklin; Lee M. Ellis

Vascular endothelial growth factor (VEGF) is associated with tumor angiogenesis and poor prognosis in human colorectal cancer (CRC). VEGF receptor-1 (VEGFR-1 or Flt-1) is a high-affinity receptor for VEGF and is typically considered specific to endothelial cells. Here we report the expression and function of VEGFR-1 in CRC cell lines. VEGFR-1 was expressed in all CRC cell lines studied as determined by RT–PCR, Western blot analysis, FACS, and ELISA. Treatment of the human CRC cell lines HT-29 and SW480 with VEGF-A (a ligand for both VEGFR-1 and -2) or VEGF-B (a ligand specific for VEGFR-1) led to activation of Erk-1/2, SAPK/JNK, and translocation of the p65 subunit of nuclear factor-κB into the nucleus. Both VEGF-A and -B led to significant induction of cell motility and invasiveness of CRC cells. Stimulation of cells with VEGF-A or -B also led to larger and more numerous colonies in soft agar. However, activation of VEGFR-1 did not increase CRC cell proliferation. In contrast to the previous paradigm that VEGFRs are not present on tumor cells of epithelial origin, we found that VEGFR-1 is present and functional on CRC cells, and activation by VEGF family ligands can activate processes involved in tumor progression and metastasis.


International Journal of Cancer | 2006

The vascular endothelial growth factor receptor (VEGFR-1) supports growth and survival of human breast carcinoma.

Yan Wu; Andrea T. Hooper; Zhaojing Zhong; Larry Witte; Peter Bohlen; Shahin Rafii; Daniel J. Hicklin

Vascular endothelial growth factor receptor 1 (VEGFR‐1) is present on endothelial cells and subsets of human tumor cells, raising the hypothesis that angiogenic factors may promote tumor growth both by inducing angiogenesis and directly signaling through activation of VEGFR‐1 on tumor cells. Here, we report that VEGFR‐1 is expressed on a panel of 16 human breast tumor cell lines, and the vasculature and the tumor cell compartment of a subset of breast carcinoma lesions, and that selective signaling through VEGFR‐1 on breast cancer cells supports tumor growth through downstream activation of the p44/42 mitogen‐activated protein kinase (MAPK) or Akt pathways. Ligand‐stimulated proliferation of breast tumor cells was inhibited by specific blockade with an anti‐VEGFR‐1 neutralizing monoclonal antibody. Treatment with anti‐VEGFR‐1 mAb significantly suppressed the growth of DU4475, MCF‐7, BT‐474 and MDA‐MB‐231 breast xenografts in athymic mice. Histological examination of anti‐VEGFR‐1 mAb treated tumor xenografts showed a significant reduction of activation of the p44/42 MAPK or Akt pathways in tumor cells resulting in an increase in tumor cell apoptosis. Importantly, cotreatment with mAbs targeting human VEGFR‐1 on tumor cells and murine VEGFR‐1 on vasculature led to more potent growth inhibition of breast tumor xenografts. The results suggest that VEGF receptors may not only modulate angiogenesis, but also directly influence the growth of VEGF receptor expressing tumors.


Circulation Research | 2008

VEGF-A Stimulates ADAM17-Dependent Shedding of VEGFR2 and Crosstalk Between VEGFR2 and ERK Signaling

Steven L. Swendeman; Karen Mendelson; Gisela Weskamp; Keisuke Horiuchi; Urban Deutsch; Peggy Scherle; Andrea T. Hooper; Shahin Rafii; Carl P. Blobel

Vascular endothelial growth factor (VEGF)-A and the VEGF receptors are critical for regulating angiogenesis during development and homeostasis and in pathological conditions, such as cancer and proliferative retinopathies. Most effects of VEGF-A are mediated by the VEGFR2 and its coreceptor, neuropilin (NRP)-1. Here, we show that VEGFR2 is shed from cells by the metalloprotease disintegrin ADAM17, whereas NRP-1 is released by ADAM10. VEGF-A enhances VEGFR2 shedding by ADAM17 but not shedding of NRP-1 by ADAM10. VEGF-A activates ADAM17 via the extracellular signal-regulated kinase (ERK) and mitogen-activated protein kinase pathways, thereby also triggering shedding of other ADAM17 substrates, including tumor necrosis factor α, transforming growth factor α, heparin-binding epidermal growth factor–like growth factor, and Tie-2. Interestingly, an ADAM17-selective inhibitor shortens the duration of VEGF-A–stimulated ERK phosphorylation in human umbilical vein endothelial cells, providing evidence for an ADAM17-dependent crosstalk between the VEGFR2 and ERK signaling. Targeting the sheddases of VEGFR2 or NRP-1 might offer new opportunities to modulate VEGF-A signaling, an already-established target for treatment of pathological neovascularization.


Journal of Clinical Investigation | 2006

Thrombospondins deployed by thrombopoietic cells determine angiogenic switch and extent of revascularization

Hans-Georg Kopp; Andrea T. Hooper; M. Johan Broekman; Scott T. Avecilla; Isabelle Petit; Min Luo; Till Milde; Carlos A. Ramos; Fan Zhang; Tabitha Kopp; Paul Bornstein; David K. Jin; Aaron J. Marcus; Shahin Rafii

Thrombopoietic cells may differentially promote or inhibit tissue vascularization by releasing both pro- and antiangiogenic factors. However, the molecular determinants controlling the angiogenic phenotype of thrombopoietic cells remain unknown. Here, we show that expression and release of thrombospondins (TSPs) by megakaryocytes and platelets function as a major antiangiogenic switch. TSPs inhibited thrombopoiesis, diminished bone marrow microvascular reconstruction following myelosuppression, and limited the extent of revascularization in a model of hind limb ischemia. We demonstrate that thrombopoietic recovery following myelosuppression was significantly enhanced in mice deficient in both TSP1 and TSP2 (TSP-DKO mice) in comparison with WT mice. Megakaryocyte and platelet levels in TSP-DKO mice were rapidly restored, thereby accelerating revascularization of myelosuppressed bone marrow and ischemic hind limbs. In addition, thrombopoietic cells derived from TSP-DKO mice were more effective in supporting neoangiogenesis in Matrigel plugs. The proangiogenic activity of TSP-DKO thrombopoietic cells was mediated through activation of MMP-9 and enhanced release of stromal cell-derived factor 1. Thus, TSP-deficient thrombopoietic cells function as proangiogenic agents, accelerating hemangiogenesis within the marrow and revascularization of ischemic hind limbs. As such, interference with the release of cellular stores of TSPs may be clinically effective in augmenting neoangiogenesis.


Nature Medicine | 2006

Autoimmunity and tumor immunity induced by immune responses to mutations in self.

Manuel E. Engelhorn; José A. Guevara-Patiño; Gabriele Noffz; Andrea T. Hooper; Olivia Lou; Jason S. Gold; Barry J Kappel; Alan N. Houghton

Little is known about the consequences of immune recognition of mutated gene products, despite their potential relevance to autoimmunity and tumor immunity. To identify mutations that induce immunity, here we have developed a systematic approach in which combinatorial DNA libraries encoding large numbers of random mutations in two syngeneic tyrosinase-related proteins are used to immunize black mice. We show that the libraries of mutated DNA induce autoimmune hypopigmentation and tumor immunity through cross-recognition of nonmutated gene products. Truncations are present in all immunogenic clones and are sufficient to elicit immunity to self, triggering recognition of normally silent epitopes. Immunity is further enhanced by specific amino acid substitutions that promote T helper cell responses. Thus, presentation of a vast repertoire of antigen variants to the immune system can enhance the generation of adaptive immune responses to self.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Generation of a functional and durable vascular niche by the adenoviral E4ORF1 gene

Marco Seandel; Jason M. Butler; Hideki Kobayashi; Andrea T. Hooper; Ian Alexander White; Fan Zhang; Eva L. Vertes; Mariko Kobayashi; Yan Zhang; Sergey V. Shmelkov; Neil R. Hackett; Sina Y. Rabbany; Julie L. Boyer; Shahin Rafii

Vascular cells contribute to organogenesis and tumorigenesis by producing unknown factors. Primary endothelial cells (PECs) provide an instructive platform for identifying factors that support stem cell and tumor homeostasis. However, long-term maintenance of PECs requires stimulation with cytokines and serum, resulting in loss of their angiogenic properties. To circumvent this hurdle, we have discovered that the adenoviral E4ORF1 gene product maintains long-term survival and facilitates organ-specific purification of PECs, while preserving their vascular repertoire for months, in serum/cytokine-free cultures. Lentiviral introduction of E4ORF1 into human PECs (E4ORF1+ ECs) increased the long-term survival of these cells in serum/cytokine-free conditions, while preserving their in vivo angiogenic potential for tubulogenesis and sprouting. Although E4ORF1, in the absence of mitogenic signals, does not induce proliferation of ECs, stimulation with VEGF-A and/or FGF-2 induced expansion of E4ORF1+ ECs in a contact-inhibited manner. Indeed, VEGF-A-induced phospho MAPK activation of E4ORF1+ ECs is comparable with that of naive PECs, suggesting that the VEGF receptors remain functional upon E4ORF1 introduction. E4ORF1+ ECs inoculated in implanted Matrigel plugs formed functional, patent, humanized microvessels that connected to the murine circulation. E4ORF1+ ECs also incorporated into neo-vessels of human tumor xenotransplants and supported serum/cytokine-free expansion of leukemic and embryonal carcinoma cells. E4ORF1 augments survival of PECs in part by maintaining FGF-2/FGF-R1 signaling and through tonic Ser-473 phosphorylation of Akt, thereby activating the mTOR and NF-κB pathways. Therefore, E4ORF1+ ECs establish an Akt-dependent durable vascular niche not only for expanding stem and tumor cells but also for interrogating the roles of vascular cells in regulating organ-specific vascularization and tumor neo-angiogenesis.

Collaboration


Dive into the Andrea T. Hooper's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Isabelle Petit

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge