Andrea Trost
Salk Institute for Biological Studies
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Andrea Trost.
Aging Cell | 2010
Matthias Hackl; Stefan Brunner; Klaus Fortschegger; Carina Schreiner; Lucia Micutkova; Christoph Mück; Gerhard Laschober; Günter Lepperdinger; Natalie Sampson; Peter Berger; Dietmar Herndler-Brandstetter; Matthias Wieser; Harald Kühnel; Alois Strasser; Mark Rinnerthaler; Michael Breitenbach; Michael Mildner; Leopold Eckhart; Erwin Tschachler; Andrea Trost; Johann W. Bauer; Christine Papak; Zlatko Trajanoski; Marcel Scheideler; Regina Grillari-Voglauer; Beatrix Grubeck-Loebenstein; Pidder Jansen-Dürr; Johannes Grillari
Aging is a multifactorial process where deterioration of body functions is driven by stochastic damage while counteracted by distinct genetically encoded repair systems. To better understand the genetic component of aging, many studies have addressed the gene and protein expression profiles of various aging model systems engaging different organisms from yeast to human. The recently identified small non‐coding miRNAs are potent post‐transcriptional regulators that can modify the expression of up to several hundred target genes per single miRNA, similar to transcription factors. Increasing evidence shows that miRNAs contribute to the regulation of most if not all important physiological processes, including aging. However, so far the contribution of miRNAs to age‐related and senescence‐related changes in gene expression remains elusive. To address this question, we have selected four replicative cell aging models including endothelial cells, replicated CD8+ T cells, renal proximal tubular epithelial cells, and skin fibroblasts. Further included were three organismal aging models including foreskin, mesenchymal stem cells, and CD8+ T cell populations from old and young donors. Using locked nucleic acid‐based miRNA microarrays, we identified four commonly regulated miRNAs, miR‐17 down‐regulated in all seven; miR‐19b and miR‐20a, down‐regulated in six models; and miR‐106a down‐regulated in five models. Decrease in these miRNAs correlated with increased transcript levels of some established target genes, especially the cdk inhibitor p21/CDKN1A. These results establish miRNAs as novel markers of cell aging in humans.
Biomolecules | 2015
Mark Rinnerthaler; Johannes Bischof; Maria Karolin Streubel; Andrea Trost; Klaus Richter
Oxidative stress in skin plays a major role in the aging process. This is true for intrinsic aging and even more for extrinsic aging. Although the results are quite different in dermis and epidermis, extrinsic aging is driven to a large extent by oxidative stress caused by UV irradiation. In this review the overall effects of oxidative stress are discussed as well as the sources of ROS including the mitochondrial ETC, peroxisomal and ER localized proteins, the Fenton reaction, and such enzymes as cyclooxygenases, lipoxygenases, xanthine oxidases, and NADPH oxidases. Furthermore, the defense mechanisms against oxidative stress ranging from enzymes like superoxide dismutases, catalases, peroxiredoxins, and GSH peroxidases to organic compounds such as L-ascorbate, α-tocopherol, beta-carotene, uric acid, CoQ10, and glutathione are described in more detail. In addition the oxidative stress induced modifications caused to proteins, lipids and DNA are discussed. Finally age-related changes of the skin are also a topic of this review. They include a disruption of the epidermal calcium gradient in old skin with an accompanying change in the composition of the cornified envelope. This modified cornified envelope also leads to an altered anti-oxidative capacity and a reduced barrier function of the epidermis.
Frontiers in Cellular Neuroscience | 2016
Andrea Trost; Simona Lange; Falk Schroedl; Daniela Bruckner; Karolina Motloch; Barbara Bogner; Alexandra Kaser-Eichberger; Clemens Strohmaier; Christian Runge; Ludwig Aigner; Francisco J. Rivera; Herbert A. Reitsamer
Pericytes are specialized mural cells located at the abluminal surface of capillary blood vessels, embedded within the basement membrane. In the vascular network these multifunctional cells fulfil diverse functions, which are indispensable for proper homoeostasis. They serve as microvascular stabilizers, are potential regulators of microvascular blood flow and have a central role in angiogenesis, as they for example regulate endothelial cell proliferation. Furthermore, pericytes, as part of the neurovascular unit, are a major component of the blood-retina/brain barrier. CNS pericytes are a heterogenic cell population derived from mesodermal and neuro-ectodermal germ layers acting as modulators of stromal and niche environmental properties. In addition, they display multipotent differentiation potential making them an intriguing target for regenerative therapies. Pericyte-deficiencies can be cause or consequence of many kinds of diseases. In diabetes, for instance, pericyte-loss is a severe pathological process in diabetic retinopathy (DR) with detrimental consequences for eye sight in millions of patients. In this review, we provide an overview of our current understanding of CNS pericyte origin and function, with a special focus on the retina in the healthy and diseased. Finally, we highlight the role of pericytes in de- and regenerative processes.
Human Molecular Genetics | 2010
Verena Wally; Marietta Brunner; Thomas Lettner; Martin Wagner; Ulrich Koller; Andrea Trost; Eva M. Murauer; Stefan Hainzl; Helmut Hintner; Johann W. Bauer
The major challenge to a successful gene therapy of autosomal dominant genetic diseases is a highly efficient and specific knock-down or repair of the disease-causing allele. In epidermolysis bullosa simplex-type Dowling-Meara (EBS-DM), a single amino acid exchange in exon 1 of the keratin 14 gene (K14) triggers a severe skin phenotype, characterized by blistering of the skin and mucous membranes after minor trauma. We chose spliceosome-mediated RNA trans-splicing to specifically replace exons 1-7 of the K14 gene. In this approach, the mutated coding region is replaced by an RNA-trans-splicing molecule (RTM) that incorporates a binding domain (BD) and the wild-type sequence of K14. Since the BD is crucial for the trans-splicing functionality, we developed a fluorescence-based RTM screen consisting of an RTM library containing random BDs. Co-transfection of the library with a target molecule enabled us to identify highly functional RTMs. The best RTMs were adapted for endogenous trans-splicing in an EBS-DM patient cell line. In this cell line, we were able to detect functional, efficient and correct trans-splicing on RNA and protein levels. Scratch assays confirmed phenotypic reversion in vitro. Owing to concomitant knock-down and repair of the mutated allele, we assume that trans-splicing is a promising tool for the treatment of autosomal dominant genetic disease.
Drug Discovery Today | 2013
Simona Lange; Andrea Trost; Herbert Tempfer; Hans-Christian Bauer; Hannelore Bauer; Eva Rohde; Herbert A. Reitsamer; Robin J.M. Franklin; Ludwig Aigner; Francisco J. Rivera
Brain pericytes (BrPCs) are essential cellular components of the central nervous system neurovascular unit involved in the regulation of blood flow, blood-brain barrier function, as well as in the stabilization of the vessel architecture. More recently, it became evident that BrPCs, besides their regulatory activities in brain vessel function and homeostasis, have pleiotropic functions in the adult CNS ranging from stromal and regeneration promoting activities to stem cell properties. This special characteristic confers BrPC cell plasticity, being able to display features of other cells within the organism. BrPCs might also be causally involved in certain brain diseases. Due to these properties BrPCs might be potential drug targets for future therapies of neurological disorders. This review summarizes BrPC properties, disorders in which this cell type might be involved, and provides suggestions for future therapeutic developments targeting BrPCs.
Investigative Ophthalmology & Visual Science | 2013
Andrea Trost; Falk Schroedl; Simona Lange; Francisco J. Rivera; Herbert Tempfer; Stefanie Korntner; C. Claus Stolt; Michael Wegner; Barbara Bogner; Alexandra Kaser-Eichberger; Karolina Krefft; Christian Runge; Ludwig Aigner; Herbert A. Reitsamer
PURPOSE The origin of pericytes (PCs) has been controversially discussed and at least three different sources of PCs are proposed: a neural crest, mesodermal, or bone marrow origin. In the present study we investigated a potential neural crest origin of ocular PCs in a transgenic Rosa26-YFP-Sox10-Cre neural crest-specific reporter mouse model at different developmental stages. METHODS The Rosa26-YFP-Sox10-Cre mouse model expresses the yellow fluorescent protein (YFP) reporter in cells with an active Sox10 promoter and was here used for cell fate studies of Sox10-positive neural crest derived progeny cells. Detection of the YFP signal in combination with double and triple immunohistochemistry of chondroitin sulfate proteoglycan (NG2), platelet derived growth factor receptor β (PDGFRβ), α smooth muscle actin (αSMA), oligodendrocyte transcription factor 2 (Olig2), and lectin was performed and analyzed by confocal microscopy. RESULTS Sox10-YFP-positive cells and profiles were detected in the inner nuclear layer, the ganglionic cell layer, and the axons of the nerve fiber layer in postnatal retinas. An additional population has been identified in the retina, optic nerve, and choroid that displays strong perivascular localization. These cells were colocalized with the PC-specific markers NG2 and PDGFRβ in embryonic (E14.5) as well as postnatal (P4, P12, 6-week-old) vasculature. Beside PCs, vascular smooth muscle cells (vSMCs) were also labeled by the Sox10-YFP reporter protein in all ocular tissues investigated. CONCLUSIONS Since YFP-positive PCs and vSMCs are colocalized with NG2 and PDGFRβ, we propose that capillary PCs and vSMCs in the retina and the optic nerve, both parts of the central nervous system, as well as in the choroid, a tissue of mesodermal origin, derive from the neural crest.
Experimental Dermatology | 2007
Andrea Trost; Johann W. Bauer; C.M. Lanschützer; Martin Laimer; Michael Emberger; Helmut Hintner; Kamil Önder
Abstract: As global transcriptome analyses with a growing demand on layer‐specific applications are widely used in cutaneous biology, we investigated the effect of established and optimized dermo‐epidermal separation methods on the quality of RNA. We compared enzymatic separation with dispase, chemical separation with 1 m sodium chloride and heat separation to a treatment with 3.8% ammonium thioyanate. The impact of freezing as well as the addition of 10 mm aurintricarboxylic acid was considered in the evaluation of the amount and quality of isolated RNA from dermis and epidermis. Using the low abundant gene kallikrein 12 for real‐time PCR analysis, we were able to demonstrate the superior RNA quality after dermo‐epidermal separation using 3.8% ammonium thiocyanate. In addition to the time effectiveness this separation technique promises dermal and epidermal purity and is therefore the method of choice for producing high‐quality RNA for genome‐wide dermal and epidermal transcriptional analysis.
The Journal of Steroid Biochemistry and Molecular Biology | 2010
Raphaela Rid; Kamil Önder; Andrea Trost; Johann W. Bauer; Helmut Hintner; Markus Ritter; Martin Jakab; Ivano Costa; Wolfgang Reischl; Klaus Richter; Susan M. MacDonald; Marina Jendrach; Jürgen Bereiter-Hahn; Michael Breitenbach
Translationally controlled tumour protein (TCTP) is an evolutionarily highly conserved molecule implicated in many processes related to cell cycle progression, proliferation and growth, to the protection against harmful conditions including apoptosis and to the human allergic response. We are showing here that after application of mild oxidative stress, human TCTP relocates from the cytoplasm to the nuclei of HaCaT keratinocytes where it directly associates with the ligand-binding domain of endogenous vitamin D(3) receptor (VDR) through its helical domain 2 (AA 71-132). Interestingly, the latter harbours a putative nuclear hormone receptor coregulatory LxxLL-like motif which seems to be involved in the interaction. Moreover, we demonstrate that VDR transcriptionally induces the expression of TCTP by binding to a previously unknown VDR response element within the TCTP promotor. Conversely, ectopically overexpressed TCTP downregulates the amount of VDR on both mRNA as well as protein level. These data, to conclude, suggest a kind of feedback regulation between TCTP and VDR to regulate a variety of (Ca(2+) dependent) cellular effects and in this way further underscore the physiological relevance of this novel protein-protein interaction.
Microbiology | 2010
M. Haim; Andrea Trost; Christina J. Maier; G. Achatz; S. Feichtner; Helmut Hintner; Johann W. Bauer; Kamil Önder
Staphylococcus aureus is a human pathogen of growing clinical significance, owing to its increasing levels of resistance to most antibiotics. Infections range from mild wound infections to severe infections such as endocarditis, osteomyelitis and septic shock. Adherence of S. aureus to human host cells is an important step, leading to colonization and infection. Adherence is mediated by a multiplicity of proteins expressed on the bacterial surface, including clumping factor B. In this study, we aimed to identify new targets of clumping factor B in human keratinocytes by undertaking a genome-wide yeast two-hybrid screen of a human keratinocyte cDNA library. We show that clumping factor B is capable of binding cytokeratin 8 (CK8), a type II cytokeratin. Using a domain-mapping strategy we identified amino acids 437-464 as necessary for this interaction. Recombinantly expressed fragments of both proteins were used in pull-down experiments and confirmed the yeast two-hybrid studies. Analysis with S. aureus strain Newman deficient in clumping factor B showed the clumping factor B-dependence of the interaction with CK8. We postulate that the clumping factor B-CK8 interaction is a novel factor in S. aureus infections.
Mechanisms of Ageing and Development | 2008
Kamil Oender; Andrea Trost; Christoph M. Lanschuetzer; Martin Laimer; Michael Emberger; Michael Breitenbach; Klaus Richter; Helmut Hintner; Johann W. Bauer
The contribution of extracellular matrix components to intrinsic skin aging has been investigated thoroughly, however, there is little information as to the role of the cytoskeletal proteins in this process. Therefore, we compared the expression of the constituents of the cytoskeleton, keratins 1-23 (K1-K23) as well as junction-plakoglobin (JUP), alpha-tubulin (TUBA), and beta-actin (ACTB) in human foreskins of both young (mean 6.4 years) and aged (mean 54.3 years) individuals. By applying RNA expression analysis to intrinsically aged human skin, we demonstrated that the mRNA levels of the genes for K1, K3, K4, K9, K13, K15, K18, K19 and K20 are downregulated in aged skin, K5 and K14 are unchanged, and K2, K16 and K17 are upregulated in aged skin. The mRNA data were confirmed on the protein level. This diverse picture is in contrast to other cytoskeletal proteins including components of the desmosome (JUP), microtubuli (TUBA) and microfilaments (ACTB) - often regarded as house-keeping genes - that were all reduced in aged skin. These cytoskeletal features of intrinsic aging highlight the importance of the cellular compartment in this process and demonstrate that special attention has to be given to RNA as well as protein normalization in aging studies.