Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andrea V. Gamarnik is active.

Publication


Featured researches published by Andrea V. Gamarnik.


PLOS Pathogens | 2009

Dengue virus capsid protein usurps lipid droplets for viral particle formation.

Marcelo M. Samsa; Juan A. Mondotte; Nestor G. Iglesias; Iranaia Assunção-Miranda; Giselle Barbosa-Lima; Andrea T. Da Poian; Patricia T. Bozza; Andrea V. Gamarnik

Dengue virus is responsible for the highest rates of disease and mortality among the members of the Flavivirus genus. Dengue epidemics are still occurring around the world, indicating an urgent need of prophylactic vaccines and antivirals. In recent years, a great deal has been learned about the mechanisms of dengue virus genome amplification. However, little is known about the process by which the capsid protein recruits the viral genome during encapsidation. Here, we found that the mature capsid protein in the cytoplasm of dengue virus infected cells accumulates on the surface of ER-derived organelles named lipid droplets. Mutagenesis analysis using infectious dengue virus clones has identified specific hydrophobic amino acids, located in the center of the capsid protein, as key elements for lipid droplet association. Substitutions of amino acid L50 or L54 in the capsid protein disrupted lipid droplet targeting and impaired viral particle formation. We also report that dengue virus infection increases the number of lipid droplets per cell, suggesting a link between lipid droplet metabolism and viral replication. In this regard, we found that pharmacological manipulation of the amount of lipid droplets in the cell can be a means to control dengue virus replication. In addition, we developed a novel genetic system to dissociate cis-acting RNA replication elements from the capsid coding sequence. Using this system, we found that mislocalization of a mutated capsid protein decreased viral RNA amplification. We propose that lipid droplets play multiple roles during the viral life cycle; they could sequester the viral capsid protein early during infection and provide a scaffold for genome encapsidation.


Journal of Virology | 2005

Long-Range RNA-RNA Interactions Circularize the Dengue Virus Genome

Diego E. Alvarez; María F. Lodeiro; S. Ludueña; Lía I. Pietrasanta; Andrea V. Gamarnik

ABSTRACT Secondary and tertiary RNA structures present in viral RNA genomes play essential regulatory roles during translation, RNA replication, and assembly of new viral particles. In the case of flaviviruses, RNA-RNA interactions between the 5′ and 3′ ends of the genome have been proposed to be required for RNA replication. We found that two RNA elements present at the ends of the dengue virus genome interact in vitro with high affinity. Visualization of individual molecules by atomic force microscopy reveled that physical interaction between these RNA elements results in cyclization of the viral RNA. Using RNA binding assays, we found that the putative cyclization sequences, known as 5′ and 3′ CS, present in all mosquito-borne flaviviruses, were necessary but not sufficient for RNA-RNA interaction. Additional sequences present at the 5′ and 3′ untranslated regions of the viral RNA were also required for RNA-RNA complex formation. We named these sequences 5′ and 3′ UAR (upstream AUG region). In order to investigate the functional role of 5′-3′ UAR complementarity, these sequences were mutated either separately, to destroy base pairing, or simultaneously, to restore complementarity in the context of full-length dengue virus RNA. Nonviable viruses were recovered after transfection of dengue virus RNA carrying mutations either at the 5′ or 3′ UAR, while the RNA containing the compensatory mutations was able to replicate. Since sequence complementarity between the ends of the genome is required for dengue virus viability, we propose that cyclization of the RNA is a required conformation for viral replication.


Journal of Virology | 2000

Interactions of Viral Protein 3CD and Poly(rC) Binding Protein with the 5′ Untranslated Region of the Poliovirus Genome

Andrea V. Gamarnik; Raul Andino

ABSTRACT The poly(rC) binding protein (PCBP) is a cellular protein required for poliovirus replication. PCBP specifically interacts with two domains of the poliovirus 5′ untranslated region (5′UTR), the 5′ cloverleaf structure, and the stem-loop IV of the internal ribosome entry site (IRES). Using footprinting analysis and site-directed mutagenesis, we have mapped the RNA binding site for this cellular protein within the stem-loop IV domain. A C-rich sequence in a loop at the top of this large domain is required for PCBP binding and is crucial for viral translation. PCBP binds to stem-loop IV RNA with six-times-higher affinity than to the 5′ cloverleaf structure. However, the binding of the viral protein 3CD (precursor of the viral protease 3C and the viral polymerase 3D) to the cloverleaf RNA dramatically increases the affinity of PCBP for this RNA element. The viral protein 3CD binds to the cloverleaf RNA but does not interact directly with stem-loop IV nor with other RNA elements of the viral IRES. Our results indicate that the interactions of PCBP with the poliovirus 5′UTR are modulated by the viral protein 3CD.


Journal of Virology | 2007

Essential Role of Dengue Virus Envelope Protein N Glycosylation at Asparagine-67 during Viral Propagation

Juan A. Mondotte; Pierre-Yves Lozach; Ali Amara; Andrea V. Gamarnik

ABSTRACT Dengue virus envelope protein (E) contains two N-linked glycosylation sites, at Asn-67 and Asn-153. The glycosylation site at position 153 is conserved in most flaviviruses, while the site at position 67 is thought to be unique for dengue viruses. N-linked oligosaccharide side chains on flavivirus E proteins have been associated with viral morphogenesis, infectivity, and tropism. Here, we examined the relevance of each N-linked glycan on dengue virus E protein by removing each site in the context of infectious viral particles. Dengue viruses lacking Asn-67 were able to infect mammalian cells and translate and replicate the viral genome, but production of new infectious particles was abolished. In addition, dengue viruses lacking Asn-153 in the E showed reduced infectivity. In contrast, ablation of one or both glycosylation sites yielded viruses that replicate and propagate in mosquito cells. Furthermore, we found a differential requirement of N-linked glycans for E secretion in mammalian and mosquito cells. While secretion of E lacking Asn-67 was efficient in mosquito cells, secretion of the same protein expressed in mammalian cells was dramatically impaired. Finally, we found that viruses lacking the carbohydrate at position 67 showed reduced infection of immature dendritic cells, suggesting interaction between this glycan and the lectin DC-SIGN. Overall, our data defined different roles for the two glycans present at the E protein during dengue virus infection, highlighting the involvement of distinct host functions from mammalian and mosquito cells during dengue virus propagation.


Viruses | 2011

Functional RNA Elements in the Dengue Virus Genome

Leopoldo G. Gebhard; Claudia V. Filomatori; Andrea V. Gamarnik

Dengue virus (DENV) genome amplification is a process that involves the viral RNA, cellular and viral proteins, and a complex architecture of cellular membranes. The viral RNA is not a passive template during this process; it plays an active role providing RNA signals that act as promoters, enhancers and/or silencers of the replication process. RNA elements that modulate RNA replication were found at the 5′ and 3′ UTRs and within the viral coding sequence. The promoter for DENV RNA synthesis is a large stem loop structure located at the 5′ end of the genome. This structure specifically interacts with the viral polymerase NS5 and promotes RNA synthesis at the 3′ end of a circularized genome. The circular conformation of the viral genome is mediated by long range RNA-RNA interactions that span thousands of nucleotides. Recent studies have provided new information about the requirement of alternative, mutually exclusive, structures in the viral RNA, highlighting the idea that the viral genome is flexible and exists in different conformations. In this article, we describe elements in the promoter SLA and other RNA signals involved in NS5 polymerase binding and activity, and provide new ideas of how dynamic secondary and tertiary structures of the viral RNA participate in the viral life cycle.


Journal of Virology | 2009

Structural and Functional Studies of the Promoter Element for Dengue Virus RNA Replication

María F. Lodeiro; Claudia V. Filomatori; Andrea V. Gamarnik

ABSTRACT The 5′ untranslated region (5′UTR) of the dengue virus (DENV) genome contains two defined elements essential for viral replication. At the 5′ end, a large stem-loop (SLA) structure functions as the promoter for viral polymerase activity. Next to the SLA, there is a short stem-loop that contains a cyclization sequence known as the 5′ upstream AUG region (5′UAR). Here, we analyzed the secondary structure of the SLA in solution and the structural requirements of this element for viral replication. Using infectious DENV clones, viral replicons, and in vitro polymerase assays, we defined two helical regions, a side stem-loop, a top loop, and a U bulge within SLA as crucial elements for viral replication. The determinants for SLA-polymerase recognition were found to be common in different DENV serotypes. In addition, structural elements within the SLA required for DENV RNA replication were also conserved among different mosquito- and tick-borne flavivirus genomes, suggesting possible common strategies for polymerase-promoter recognition in flaviviruses. Furthermore, a conserved oligo(U) track present downstream of the SLA was found to modulate RNA synthesis in transfected cells. In vitro polymerase assays indicated that a sequence of at least 10 residues following the SLA, upstream of the 5′UAR, was necessary for efficient RNA synthesis using the viral 3′UTR as template.


Journal of Virology | 2003

Amino Acid Substitutions at Position 190 of Human Immunodeficiency Virus Type 1 Reverse Transcriptase Increase Susceptibility to Delavirdine and Impair Virus Replication

Wei Huang; Andrea V. Gamarnik; Kay Limoli; Christos J. Petropoulos; Jeannette M. Whitcomb

ABSTRACT Suboptimal treatment of human immunodeficiency virus type 1 (HIV-1) infection with nonnucleoside reverse transcriptase inhibitors (NNRTI) often results in the rapid selection of drug-resistant virus. Several amino acid substitutions at position 190 of reverse transcriptase (RT) have been associated with reduced susceptibility to the NNRTI, especially nevirapine (NVP) and efavirenz (EFV). In the present study, the effects of various 190 substitutions observed in viruses obtained from NNRTI-experienced patients were characterized with patient-derived HIV isolates and confirmed with a panel of isogenic viruses. Compared to wild-type HIV, which has a glycine at position 190 (G190), viruses with 190 substitutions (A, C, Q, S, V, E, or T, collectively referred to as G190X substitutions) were markedly less susceptible to NVP and EFV. In contrast, delavirdine (DLV) susceptibility of these G190X viruses increased from 3 to 300-fold (hypersusceptible) or was only slightly decreased. The replication capacity of viruses with certain 190 substitutions (C, Q, V, T, and E) was severely impaired and was correlated with reduced virion-associated RT activity and incomplete protease (PR) processing of the viral p55 gag polyprotein. These defects were the result of inadequate p160 gagpol incorporation into virions. Compensatory mutations within RT and PR improved replication capacity, p55 gag processing, and RT activity, presumably through increased incorporation of p160 gagpol into virions. We observe an inverse relationship between the degree of NVP and EFV resistance and the impairment of viral replication in viruses with substitutions at 190 in RT. These observations may have important implications for the future design and development of antiretroviral drugs that restrict the outgrowth of resistant variants with high replication capacity.


Journal of Biological Chemistry | 2011

RNA Sequences and Structures Required for the Recruitment and Activity of the Dengue Virus Polymerase

Claudia V. Filomatori; Nestor G. Iglesias; Sergio M. Villordo; Diego E. Alvarez; Andrea V. Gamarnik

Dengue virus RNA-dependent RNA polymerase specifically binds to the viral genome by interacting with a promoter element known as stem-loop A (SLA). Although a great deal has been learned in recent years about the function of this promoter in dengue virus-infected cells, the molecular details that explain how the SLA interacts with the polymerase to promote viral RNA synthesis remain poorly understood. Using RNA binding and polymerase activity assays, we defined two elements of the SLA that are involved in polymerase interaction and RNA synthesis. Mutations at the top of the SLA resulted in RNAs that retained the ability to bind the polymerase but impaired promoter-dependent RNA synthesis. These results indicate that protein binding to the SLA is not sufficient to induce polymerase activity and that specific nucleotides of the SLA are necessary to render an active polymerase-promoter complex for RNA synthesis. We also report that protein binding to the viral RNA induces conformational changes downstream of the promoter element. Furthermore, we found that structured RNA elements at the 3′ end of the template repress dengue virus polymerase activity in the context of a fully active SLA promoter. Using assays to evaluate initiation of RNA synthesis at the viral 3′-UTR, we found that the RNA-RNA interaction mediated by 5′-3′-hybridization was able to release the silencing effect of the 3′-stem-loop structure. We propose that the long range RNA-RNA interactions in the viral genome play multiple roles during RNA synthesis. Together, we provide new molecular details about the promoter-dependent dengue virus RNA polymerase activity.


PLOS Pathogens | 2015

Dengue virus RNA structure specialization facilitates host adaptation

Sergio M. Villordo; Claudia V. Filomatori; Irma Sanchez-Vargas; Carol D. Blair; Andrea V. Gamarnik

Many viral pathogens cycle between humans and insects. These viruses must have evolved strategies for rapid adaptation to different host environments. However, the mechanistic basis for the adaptation process remains poorly understood. To study the mosquito-human adaptation cycle, we examined changes in RNA structures of the dengue virus genome during host adaptation. Deep sequencing and RNA structure analysis, together with fitness evaluation, revealed a process of host specialization of RNA elements of the viral 3’UTR. Adaptation to mosquito or mammalian cells involved selection of different viral populations harvesting mutations in a single stem-loop structure. The host specialization of the identified RNA structure resulted in a significant viral fitness cost in the non-specialized host, posing a constraint during host switching. Sequence conservation analysis indicated that the identified host adaptable stem loop structure is duplicated in dengue and other mosquito-borne viruses. Interestingly, functional studies using recombinant viruses with single or double stem loops revealed that duplication of the RNA structure allows the virus to accommodate mutations beneficial in one host and deleterious in the other. Our findings reveal new concepts in adaptation of RNA viruses, in which host specialization of RNA structures results in high fitness in the adapted host, while RNA duplication confers robustness during host switching.


Antimicrobial Agents and Chemotherapy | 2010

A derivate of the antibiotic doxorubicin is a selective inhibitor of dengue and yellow fever virus replication in vitro.

Suzanne Kaptein; Tine De Burghgraeve; Mathy Froeyen; Boris Pastorino; Marijke Alen; Juan A. Mondotte; Piet Herdewijn; Michael Jacobs; Xavier de Lamballerie; Dominique Schols; Andrea V. Gamarnik; Ferenc Sztaricskai; Johan Neyts

ABSTRACT A doxorubicin derivate, SA-17, that carries a squaric acid amide ester moiety at the carbohydrate (α-l-daunosaminyl) group was identified as a selective inhibitor of in vitro dengue virus (DENV) serotype 2 replication (50% effective concentration [EC50] = 0.34 ± 0.20 μg/ml [0.52 ± 0.31 μM]). SA-17 is markedly less cytostatic than the parent compound, resulting in a selectivity index value of ∼100. SA-17 also inhibits yellow fever virus 17D (YFV-17D) replication (EC50 = 3.1 ± 1.0 μg/ml [4.8 ± 1.5 μM]), although less efficiently than DENV replication, but proved inactive against a variety of enveloped and nonenveloped viruses. SA-17 inhibits in vitro flavivirus replication in a dose-dependent manner, as was assessed by virus yield reduction assays and quantification of viral RNA by means of real-time quantitative reverse transcriptase PCR (RT-qPCR) (∼2 to 3 log reduction). The anti-DENV activity was confirmed using a Renilla luciferase-expressing dengue reporter virus. Time-of-drug-addition studies revealed that SA-17 acts at the very early stages of the viral replication cycle (i.e., virus attachment and/or virus entry). This observation was corroborated by the observation that SA-17, unlike the nucleoside analogue ribavirin, does not inhibit the replication of DENV subgenomic replicons. Preincubation of high-titer stocks of DENV or YFV-17D with ≥5 μg/ml SA-17 resulted in 100% inhibition of viral infectivity (≥3 log reduction). SA-17, however, did not prove virucidal.

Collaboration


Dive into the Andrea V. Gamarnik's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nestor G. Iglesias

Fundación Instituto Leloir

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sergio M. Villordo

Fundación Instituto Leloir

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Juan A. Mondotte

Fundación Instituto Leloir

View shared research outputs
Top Co-Authors

Avatar

Raul Andino

University of California

View shared research outputs
Top Co-Authors

Avatar

Marcelo M. Samsa

Fundación Instituto Leloir

View shared research outputs
Top Co-Authors

Avatar

María F. Lodeiro

Fundación Instituto Leloir

View shared research outputs
Top Co-Authors

Avatar

Sergio B. Kaufman

University of Buenos Aires

View shared research outputs
Researchain Logo
Decentralizing Knowledge