Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andrea Vélez is active.

Publication


Featured researches published by Andrea Vélez.


Inorganic Chemistry | 2013

POP-Pincer Silyl Complexes of Group 9: Rhodium versus Iridium

Miguel A. Esteruelas; Montserrat Oliván; Andrea Vélez

9,9-Dimethyl-4,5-bis(diisopropylphosphino)xanthene (xant(P(i)Pr2)2) derivatives RhCl{xant(P(i)Pr2)2} (1) and I rHCl{xant(P(i)Pr2)[(i)PrPCH(Me) CH2]} (2) react with diphenylsilane and triethylsilane to give the saturated d(6)-compounds RhHCl(SiR3){xant(P(i)Pr2)2} (SiR3 = SiHPh2 (3), SiEt3 (4)) and IrHCl(SiR3){xant(P(i)Pr2)2} (SiR3 = SiHPh2 (5), SiEt3 (6)). Complexes 3 and 5 undergo a Cl/H position exchange process via the MH{xant(P(i)Pr2)2} (M = Rh (8), Ir (E)) intermediates. The rhodium complex 3 affords the square planar d(8)-silyl derivative Rh(SiClPh2){xant(P(i)Pr2)2} (7), whereas the iridium derivative 5 gives IrH2(SiClPh2){xant(P(i)Pr2)2} (9), which is stable. In agreement with the formation of 7, the reactions of 8 with silanes are a general method to prepare square planar d(8)-rhodium-silyl derivatives. Thus, the addition of triethylsilane and triphenylsilane to 8 initially leads to the dihydrides RhH2(SiR3){xant(P(i)Pr2)2} (SiR3 = SiEt3 (10), SiPh3 (11)), which lose molecular hydrogen to afford Rh(SiR3){xant(P(i)Pr2)2} (SiR3 = SiEt3 (12), SiPh3 (13)). Treatment of 7 with NaBAr(F)4·2H2O leads to the cationic five-coordinate d(6)-species [RhH{Si(OH)Ph2}{xant(P(i)Pr2)2}]BAr(F)4 (14) through a silylene intermediate. According to the participation of the latter in the formation of 14, this cation is an efficient catalyst precursor for the monoalcoholysis of diphenylsilane with a wide range of alcohols, reaching turnover frequencies at 50% of conversion between 4000 and 76 500 h(-1). The X-ray structures of 3, 6, 7, 9, 12, and 14 are also reported.


Inorganic Chemistry | 2013

Xantphos-type complexes of group 9: Rhodium versus iridium

Miguel A. Esteruelas; Montserrat Oliván; Andrea Vélez

Treatment of the dimer [Rh(μ-Cl)(C8H14)2]2 (1a) with 9,9-dimethyl-4,5-bis(diisopropylphosphino)xanthene [xant(P(i)Pr2)2] leads to the d(8) square-planar complex RhCl{xant(P(i)Pr2)2} (2), whereas reaction of the iridium counterpart [Ir(μ-Cl)(C8H14)2]2 (1b) gives the d(6) octahedral compound IrHCl{xant(P(i)Pr2)[(i)PrPCH(Me)CH2]} (3) as a result of the intramolecular C-H bond activation of one of the isopropyl substituents of the phosphine. Stirring 2 and 3 in 0.5 N KOH solutions of 2-propanol gives rise to the formation of hydrides RhH{xant(P(i)Pr2)2} (4) and IrH3{xant(P(i)Pr2)2} (5), respectively. In n-octane at 60 °C, complex 2 is stable. However, compound 3 activates the alkane to give the cis-dihydride IrH2Cl{xant(P(i)Pr2)2} (6) and a mixture of 3- and 4-octene. Complex 6 can be also obtained by the reaction of 3 with H2. Under the same conditions, 2 affords the rhodium analogue RhH2Cl{xant(P(i)Pr2)2} (7). Compounds 2-4 react with triflic acid (HOTf) to give RhHCl(OTf){xant(P(i)Pr2)2} (8), IrHCl(OTf){xant(P(i)Pr2)2} (9), and RhH2(OTf){xant(P(i)Pr2)2} (10), respectively. The related iridium derivative IrH2(OTf){xant(P(i)Pr2)2} (11) has also been prepared by the reaction of 6 with Tl(OTf). Complexes 2, 6, and 9 have been characterized by X-ray diffraction analysis. The {xant(P(i)Pr2)2}M skeleton is T-shaped with the metal center situated in the common vertex.


Inorganic Chemistry | 2016

Ammonia Borane Dehydrogenation Promoted by a Pincer-Square-Planar Rhodium(I) Monohydride: A Stepwise Hydrogen Transfer from the Substrate to the Catalyst

Miguel A. Esteruelas; Pau Nolis; Montserrat Oliván; Enrique Oñate; Adelina Vallribera; Andrea Vélez

The pincer d(8)-monohydride complex RhH{xant(P(i)Pr2)2} (xant(P(i)Pr2)2 = 9,9-dimethyl-4,5-bis(diisopropylphosphino)xanthene) promotes the release of 1 equiv of hydrogen from H3BNH3 and H3BNHMe2 with TOF50% values of 3150 and 1725 h(-1), to afford [BH2NH2]n and [BH2NMe2]2 and the tandem ammonia borane dehydrogenation-cyclohexene hydrogenation. DFT calculations on the ammonia borane dehydrogenation suggest that the process takes place by means of cis-κ(2)-PP-species, through four stages including: (i) Shimoi-type coordination of ammonia borane, (ii) homolytic addition of the coordinated H-B bond to afford a five-coordinate dihydride-boryl-rhodium(III) intermediate, (iii) reductive intramolecular proton transfer from the NH3 group to one of the hydride ligands, and (iv) release of H2 from the resulting square-planar hydride dihydrogen rhodium(I) intermediate.


Journal of the American Chemical Society | 2015

Conclusive evidence on the mechanism of the rhodium-mediated decyanative borylation.

Miguel A. Esteruelas; Montserrat Oliván; Andrea Vélez

The stoichiometric reactions proposed in the mechanism of the rhodium-mediated decyanative borylation have been performed and all relevant intermediates isolated and characterized including their X-ray structures. Complex RhCl{xant(P(i)Pr2)2} (1, xant(P(i)Pr2)2 = 9,9-dimethyl-4,5-bis(diisopropylphosphino)xanthene) reacts with bis(pinacolato)diboron (B2pin2), in benzene, to give the rhodium(III) derivative RhHCl(Bpin){xant(P(i)Pr2)2} (4) and PhBpin. The reaction involves the oxidative addition of B2pin2 to 1 to give RhCl(Bpin)2{xant(P(i)Pr2)2}, which eliminates ClBpin generating Rh(Bpin){xant(P(i)Pr2)2} (2). The reaction of the latter with the solvent yields PhBpin and the monohydride RhH{xant(P(i)Pr2)2} (6), which adds the eliminated ClBpin. Complex 4 and its catecholboryl counterpart RhHCl(Bcat){xant(P(i)Pr2)2} (7) have also been obtained by oxidative addition of HBR2 to 1. Complex 2 is the promoter of the decyanative borylation. Thus, benzonitrile and 4-(trifluoromethyl)benzonitrile insert into the Rh-B bond of 2 to form Rh{C(R-C6H4)═NBpin}{xant(P(i)Pr2)2} (R = H (8), p-CF3 (9)), which evolve into the aryl derivatives RhPh{xant(P(i)Pr2)2} (3) and Rh(p-CF3-C6H4){xant(P(i)Pr2)2} (10), as a result of the extrusion of CNBpin. The reactions of 3 and 10 with B2pin2 yield the arylBpin products and regenerate 2.


Organometallics | 2015

POP–Rhodium-Promoted C–H and B–H Bond Activation and C–B Bond Formation

Miguel A. Esteruelas; Montserrat Oliván; Andrea Vélez


Organometallics | 2017

Selective C-Cl Bond Oxidative Addition of Chloroarenes to a POP-Rhodium Complex

Sheila G. Curto; Miguel A. Esteruelas; Montserrat Oliván; Enrique Oñate; Andrea Vélez


Organometallics | 2018

β-Borylalkenyl Z–E Isomerization in Rhodium-Mediated Diboration of Nonfunctionalized Internal Alkynes

Sheila G. Curto; Miguel A. Esteruelas; Montserrat Oliván; Enrique Oñate; Andrea Vélez


Archive | 2017

CCDC 1527884: Experimental Crystal Structure Determination

Sheila G. Curto; Miguel A. Esteruelas; Montserrat Oliván; Enrique Oñate; Andrea Vélez


Archive | 2017

CCDC 1527883: Experimental Crystal Structure Determination

Sheila G. Curto; Miguel A. Esteruelas; Montserrat Oliván; Enrique Oñate; Andrea Vélez


Archive | 2017

CCDC 1527881: Experimental Crystal Structure Determination

Sheila G. Curto; Miguel A. Esteruelas; Montserrat Oliván; Enrique Oñate; Andrea Vélez

Collaboration


Dive into the Andrea Vélez's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Adelina Vallribera

Autonomous University of Barcelona

View shared research outputs
Researchain Logo
Decentralizing Knowledge