Andrea Ventrella
University of Bari
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Andrea Ventrella.
Food Chemistry | 2012
Francesco Longobardi; Andrea Ventrella; G. Casiello; D. Sacco; Lucia Catucci; Angela Agostiano; Michael G. Kontominas
In this paper, virgin olive oils (VOOs) coming from three different geographic origins of Apulia, were analysed for free acidity, peroxide value, spectrophotometric indexes, chlorophyll content, sterol, fatty acid, and triacylglycerol compositions. In order to predict the geographical origin of VOOs, different multivariate approaches were applied. By performing principal component analysis (PCA) a modest natural grouping of the VOOs was observed on the basis of their origin, and consequently three supervised techniques, i.e., general discriminant analysis (GDA), partial least squares-discriminant analysis (PLS-DA) and soft independent modelling of class analogy (SIMCA) were used and the results were compared. In particular, the best prediction ability was produced by applying GDA (average prediction ability of 82.5%), even if interesting results were obtained also by applying the other two classification techniques, i.e., 77.2% and 75.5% for PLS-DA and SIMCA, respectively.
Food Chemistry | 2013
Francesco Longobardi; Andrea Ventrella; Anna Maria Bianco; Lucia Catucci; Isabella Cafagna; Vito Gallo; Piero Mastrorilli; Angela Agostiano
In this study, non-targeted (1)H NMR fingerprinting was used in combination with multivariate statistical techniques for the classification of Italian sweet cherries based on their different geographical origins (Emilia Romagna and Puglia). As classification techniques, Soft Independent Modelling of Class Analogy (SIMCA), Partial Least Squares Discriminant Analysis (PLS-DA), and Linear Discriminant Analysis (LDA) were carried out and the results were compared. For LDA, before performing a refined selection of the number/combination of variables, two different strategies for a preliminary reduction of the variable number were tested. The best average recognition and CV prediction abilities (both 100.0%) were obtained for all the LDA models, although PLS-DA also showed remarkable performances (94.6%). All the statistical models were validated by observing the prediction abilities with respect to an external set of cherry samples. The best result (94.9%) was obtained with LDA by performing a best subset selection procedure on a set of 30 principal components previously selected by a stepwise decorrelation. The metabolites that mostly contributed to the classification performances of such LDA model, were found to be malate, glucose, fructose, glutamine and succinate.
Bioelectrochemistry | 2010
Andrea Ventrella; Lucia Catucci; Angela Agostiano
In this work, studies on the effects produced by atrazine, terbutryn or diuron onto spinach photosynthetic materials were performed by observing changes in fluorescence emission and in electron transfer activities of the bio-samples in the presence of such herbicides; chloroplasts, thylakoids, Photosystem II-enriched thylakoids (BBYs) and isolated Photosystem II (PSII) were employed. This approach evidenced differences in the herbicide-photosynthetic material interactions going up-down from chloroplasts to proteins. Rapid emission increments were detected for chloroplasts and thylakoids, in particular in the presence of terbutryn; no remarkable emission increment was recorded when BBYs or PSII were used for this assay. The dependences of the chloroplast and thylakoid emission intensities upon herbicide concentration were investigated with responses even at concentrations below 10(-7)M. The influence of lowering the temperature was also tested, and the stabilizing effects on the resistances of the bio-samples against herbicides were recorded. Furthermore, Hill Reaction-based colorimetric assays were performed to monitor the electron transfer activities of the bio-samples in the presence of herbicides, after brief incubations. As a result, chloroplasts and thylakoids resulted to be sensitive tools in responding to concentrations even lower than 10(-7)M of most herbicides; nevertheless, an interesting sensitivity to herbicides was also observed for PSII.
Food Chemistry | 2015
Francesco Longobardi; G. Casiello; Andrea Ventrella; V. Mazzilli; A. Nardelli; D. Sacco; Lucia Catucci; Angela Agostiano
Sweet cherries from two Italian regions, Apulia and Emilia Romagna, were analysed using electronic nose (EN) and isotope ratio mass spectrometry (IRMS), with the aim of distinguishing them according to their geographic origin. The data were elaborated by statistical techniques, examining the EN and IRMS datasets both separately and in combination. Preliminary exploratory overviews were performed and then linear discriminant analyses (LDA) were used for classification. Regarding EN, different approaches for variable selection were tested, and the most suitable strategies were highlighted. The LDA classification results were expressed in terms of recognition and prediction abilities and it was found that both EN and IRMS performed well, with IRMS showing better cross-validated prediction ability (91.0%); the EN-IRMS combination gave slightly better results (92.3%). In order to validate the final results, the models were tested using an external set of samples with excellent results.
Food Chemistry | 2012
Antonietta Baiano; Carmela Terracone; Francesco Longobardi; Andrea Ventrella; Angela Agostiano; Matteo Alessandro Del Nobile
In order to investigate the effects of cryomaceration and reductive vinification on chemical and physical indices and on antioxidant compounds of Sauvignon blanc wines, four wine-making procedures were applied: traditional white vinification, skin cryomaceration, vinification in a reductive environment, and a combination of the last two procedures. Significant differences were highlighted by both conventional analyses and NMR spectroscopy. The strongest changes were for organic acid concentrations (tartaric, in particular) and phenolic content. Cryomaceration caused a strong precipitation of tartaric acid, which may be desired if grapes have high acidity values. Cryomaceration protected those flavans reactive with vanillin from the action of oxidative enzymes. Vinification in a reductive environment, alone or combined with a cryomaceration step, gave wines with the highest solids content and caused a greater extraction of phenolic compounds from skins compared to traditional winemaking or cryomaceration alone, due to SO(2) solubilisation. Grape oenological expression can be strongly affected by the application of the investigated wine-making procedures.
Bioelectrochemistry | 2009
Andrea Ventrella; Lucia Catucci; Elena V. Piletska; Sergey A. Piletsky; Angela Agostiano
In this work studies on rapid inhibitory interactions between heavy metals and photosynthetic materials at different organization levels were carried out by optical assay techniques, investigating the possibility of applications in the heavy metal detection field. Spinach chloroplasts, thylakoids and Photosystem II proteins were employed as biotools in combination with colorimetric assays based on dichlorophenol indophenole (DCIP) photoreduction and on fluorescence emission techniques. It was found that copper and mercury demonstrated a strong and rapid photosynthetic activity inhibition, that varied from proteins to membranes, while other metals like nickel, cobalt and manganese produced only slight inhibition effects on all tested photosynthetic materials. By emission measurements, only copper was found to rapidly influence the photosynthetic material signals. These findings give interesting information about the rapid effects of heavy metals on isolated photosynthetic samples, and are in addition to the literature data concerning the effects of growth in heavy metal enriched media.
Physical Chemistry Chemical Physics | 2015
Vito Rizzi; Ilario Losito; Andrea Ventrella; Paola Fini; Aurore Fraix; Salvatore Sortino; Angela Agostiano; Francesco Longobardi; Pinalysa Cosma
The photoreactivity of 4-thiothymidine (S(4)TdR) under visible light in the presence of Rose Bengal (RB), acting as a photosensitizer, was investigated in aqueous solutions at pH 7 and 12, using UV-vis, FTIR-ATR and (1)H-NMR spectroscopic techniques, time resolved absorption spectroscopy and electrospray ionization mass spectrometry (ESI-MS). Evidence for the generation of thymidine (TdR) as the main product, after one hour of irradiation, was obtained from UV-Vis data, that suggested 4-thiothymidine photodegradation to be faster at basic pH, and confirmed by FTIR-ATR and (1)H-NMR data. Clues for the presence of a further product, likely corresponding to a dimeric form of S(4)TdR, were obtained from the latter techniques. Besides indicating the presence of thymidine, the ESI-MS and MS/MS spectra of the reaction mixtures enabled the identification of the additional product as a S-S bridged covalent dimer of 4-thiothymidine. The concentration of the dimeric species could be estimated with the aid of (1)H-NMR data and was found to be lower than that of thymidine in pH 7 reaction mixtures and almost negligible in the pH 12 ones. From a mechanistic point of view, time-resolved absorption spectroscopy measurements provided direct evidence that the formation of the two products cannot be ascribed to a photoinduced electron transfer involving S(4)TdR and the excited triplet state of RB. Rather, their generation can be interpreted as the result of a bimolecular reaction occurring between singlet state oxygen ((1)O2), photogenerated by RB, and S(4)TdR, as demonstrated by the direct detection of (1)O2 through IR luminescence spectroscopy. More specifically, a sequential reaction pathway, consisting in the generation of an electrophilic hydroxylated form of S(4)TdR and its subsequent, rapid reaction with S(4)TdR, was hypothesized to explain the presence of the S-S bridged covalent dimer of 4-thiothymidine in the reaction mixtures. The described processes make S(4)TdR an interesting candidate in the role of molecular probe for the detection of (1)O2 under different pH conditions.
Food Research International | 2015
Antonietta Baiano; Annalisa Mentana; Maurizio Quinto; Diego Centonze; Francesco Longobardi; Andrea Ventrella; Angela Agostiano; Gabriella Varva; Antonio De Gianni; Carmela Terracone; Matteo Alessandro Del Nobile
A wine was obtained from cryomacerated Minutolo grapes under reductive conditions and aged for 12months in glass container and in 3 types of amphorae. After aging, wines in glass containers showed the highest alcohol content, volatile acidity, dissolved oxygen, concentrations of aromatics, alcohols, and esters and by the lowest contents of enols and terpenes. They also showed the highest decrease of flavonoids, hydroxycinnamoyl tartaric acids, and procyanidins. Wines in raw amphorae showed the dramatic decrease of flavonoids and flavans reactive with vanillin. The highest antioxidant activity was exhibited by wines in engobe amphorae, while the lowest values were showed by the wines in glass containers and glazed amphorae. Caftaric acid and procyanidin B3 decreased in wine aged under glass while epicatechin mainly reduced in raw amphorae. According to the Principal Component Analysis, the wines resulted homogeneously grouped as a function of the type of container in which were aged.
RSC Advances | 2014
Vito Rizzi; Ilario Losito; Andrea Ventrella; Paola Fini; Angela Agostiano; Francesco Longobardi; Pinalysa Cosma
The pH-related characteristics of 4-thiothymidine and its stability during prolonged exposure, at room temperature, to a neon lamp emitting in the 400–700 nm wavelength range were investigated by different spectroscopic techniques (UV-Vis, FTIR-ATR, 1H-NMR) and by ElectroSpray Ionization Mass Spectrometry (ESI-MS). The evaluation of the nucleoside photostability was performed as a control, with the perspective of studying its reactivity under the same conditions but in the presence of visible light-absorbing photosensitizers, able to generate reactive oxygen species. The comparison between UV-Vis spectra recorded at different pH values in the 7–12 range suggested the presence of an equilibrium related to the deprotonation of the N3–H group of 4-thiothymidine, with a pKa estimated to be close to 9. Some effects of the deprotonation occurring at alkaline pH were observed also in FTIR-ATR spectra, the main feature being the appearance of a band related to CN stretching, interpreted with the assumption of a partial double bond character by C2–N3, N3–C4 and C2–O− bonds, as a consequence of negative charge delocalization on the pyrimidine ring. As for photostability, UV-Vis, FTIR-ATR and NMR measurements suggested the generation of thymidine as a by-product but only after a prolonged (48 hours) irradiation time, whereas no significant alteration occurred in a shorter time range (1–2 hours), i.e. the one that will be considered in future studies involving the presence of photosensitizers. The nucleoside stability up to 2 hours of irradiation was confirmed by ESI-MS analyses; furthermore, on the other hand, the latter indicated the presence of three additional by-products, besides thymidine, after 48 hours of irradiation. In particular, an hydroxylated form of 4-thiothymidine and two dimeric species, characterized by S–S and S–O covalent bridges between two 4-thiothymidine and a 4-thiothymidine and a thymidine molecule, respectively, were detected.
Food Chemistry | 2017
Francesco Longobardi; Valentina Innamorato; Annalisa Di Gioia; Andrea Ventrella; Vincenzo Lippolis; Antonio Logrieco; Lucia Catucci; Angela Agostiano
Lentil samples coming from two different countries, i.e. Italy and Canada, were analysed using untargeted 1H NMR fingerprinting in combination with chemometrics in order to build models able to classify them according to their geographical origin. For such aim, Soft Independent Modelling of Class Analogy (SIMCA), k-Nearest Neighbor (k-NN), Principal Component Analysis followed by Linear Discriminant Analysis (PCA-LDA) and Partial Least Squares-Discriminant Analysis (PLS-DA) were applied to the NMR data and the results were compared. The best combination of average recognition (100%) and cross-validation prediction abilities (96.7%) was obtained for the PCA-LDA. All the statistical models were validated both by using a test set and by carrying out a Monte Carlo Cross Validation: the obtained performances were found to be satisfying for all the models, with prediction abilities higher than 95% demonstrating the suitability of the developed methods. Finally, the metabolites that mostly contributed to the lentil discrimination were indicated.