Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andrea Volterra is active.

Publication


Featured researches published by Andrea Volterra.


Nature | 1998

Prostaglandins stimulate calcium-dependent glutamate release in astrocytes

Paola Bezzi; Lucia Pasti; Sabino Vesce; Daniela Rossi; Barbara Lodi Rizzini; Tullio Pozzan; Andrea Volterra

Astrocytes in the brain form an intimately associated network with neurons. They respond to neuronal activity and synaptically released glutamate by raising intracellular calcium concentration ([Ca2+]i), which could represent the start of back-signalling to neurons. Here we show that coactivation of the AMPA/kainate and metabotropic glutamate receptors (mGluRs) on astrocytes stimulates these cells to release glutamate through a Ca2+-dependent process mediated by prostaglandins. Pharmacological inhibition of prostaglandin synthesis prevents glutamate release, whereas application of prostaglandins (in particular PGE2) mimics and occludes the releasing action of GluR agonists. PGE2 promotes Ca2+-dependent glutamate release from cultured astrocytes and also from acute brain slices under conditions that suppress neuronal exocytotic release. When applied to the CA1 hippocampal region, PGE2 induces increases in [Ca2+]i both in astrocytes and in neurons. The [Ca2+]i increase in neurons is mediated by glutamate released from astrocytes, because it is abolished by GluR antagonists. Our results reveal a new pathway of regulated transmitter release from astrocytes and outline the existence of an integrated glutamatergic cross-talk between neurons and astrocytes in situ that may play critical roles in synaptic plasticity and in neurotoxicity.


Nature Neuroscience | 2001

CXCR4-activated astrocyte glutamate release via TNFalpha: amplification by microglia triggers neurotoxicity.

Paola Bezzi; María Domercq; Liliana Brambilla; Rossella Galli; Dominique Schols; Erik De Clercq; Angelo L. Vescovi; Giacinto Bagetta; George Kollias; Jacopo Meldolesi; Andrea Volterra

Astrocytes actively participate in synaptic integration by releasing transmitter (glutamate) via a calcium-regulated, exocytosis-like process. Here we show that this process follows activation of the receptor CXCR4 by the chemokine stromal cell-derived factor 1 (SDF-1). An extraordinary feature of the ensuing signaling cascade is the rapid extracellular release of tumor necrosis factor-α (TNFα). Autocrine/paracrine TNFα-dependent signaling leading to prostaglandin (PG) formation not only controls glutamate release and astrocyte communication, but also causes their derangement when activated microglia cooperate to dramatically enhance release of the cytokine in response to CXCR4 stimulation. We demonstrate that altered glial communication has direct neuropathological consequences and that agents interfering with CXCR4-dependent astrocyte–microglia signaling prevent neuronal apoptosis induced by the HIV-1 coat glycoprotein, gp120IIIB. Our results identify a new pathway for glia–glia and glia–neuron communication that is relevant to both normal brain function and neurodegenerative diseases.


The Journal of Neuroscience | 1997

Intracellular Calcium Oscillations in Astrocytes: A Highly Plastic, Bidirectional Form of Communication between Neurons and Astrocytes In Situ

Lucia Pasti; Andrea Volterra; Tullio Pozzan

The spatial–temporal characteristics of intracellular calcium ([Ca2+]i) changes elicited in neurons and astrocytes by various types of stimuli were investigated by means of confocal fluorescent microscopy in acute rat brain slices loaded with the Ca2+ indicator indo-1. Neurons and astrocytes from the visual cortex and CA1 hippocampal region were identified in situ on the basis of their morphological, electrophysiological, and pharmacological features. We show here that stimulation of neuronal afferents triggered periodic [Ca2+]i oscillations in astrocytes. The frequency of these oscillations was under a dynamic control by neuronal activity as it changed according to the pattern of stimulation. After repetitive episodes of neuronal stimulation as well as repetitive stimulation with a metabotropic glutamate receptor agonist, astrocytes displayed a long-lasting increase in [Ca2+]i oscillation frequency. Oscillating astrocytes were accompanied by repetitive [Ca2+]i elevations in adjacent neurons, most likely because of the release of glutamate via a tetanus toxin-resistant process. These results reveal that [Ca2+]i oscillations in astrocytes represent a highly plastic signaling system that underlies the reciprocal communication between neurons and astrocytes.


Nature Neuroscience | 2004

Astrocytes contain a vesicular compartment that is competent for regulated exocytosis of glutamate

Paola Bezzi; Vidar Gundersen; José Luis Galbete; Gerald Seifert; Christian Steinhäuser; Ethel Pilati; Andrea Volterra

Astrocytes establish rapid cell-to-cell communication through the release of chemical transmitters. The underlying mechanisms and functional significance of this release are, however, not well understood. Here we identify an astrocytic vesicular compartment that is competent for glutamate exocytosis. Using postembedding immunogold labeling of the rat hippocampus, we show that vesicular glutamate transporters (VGLUT1/2) and the vesicular SNARE protein, cellubrevin, are both expressed in small vesicular organelles that resemble synaptic vesicles of glutamatergic terminals. Astrocytic vesicles, which are not as densely packed as their neuronal counterparts, can be observed in small groups at sites adjacent to neuronal structures bearing glutamate receptors. Fluorescently tagged VGLUT-containing vesicles were studied dynamically in living astrocytes by total internal reflection fluorescence (TIRF) microscopy. After activation of metabotropic glutamate receptors, astrocytic vesicles underwent rapid (milliseconds) Ca2+- and SNARE-dependent exocytic fusion that was accompanied by glutamate release. These data document the existence of a Ca2+-dependent quantal glutamate release activity in glia that was previously considered to be specific to synapses.


Nature Neuroscience | 2007

Glutamate exocytosis from astrocytes controls synaptic strength

Pascal Jourdain; Linda H. Bergersen; Khaleel Bhaukaurally; Paola Bezzi; Mirko Santello; María Domercq; Carlos Matute; Fiorella Tonello; Vidar Gundersen; Andrea Volterra

The release of transmitters from glia influences synaptic functions. The modalities and physiological functions of glial release are poorly understood. Here we show that glutamate exocytosis from astrocytes of the rat hippocampal dentate molecular layer enhances synaptic strength at excitatory synapses between perforant path afferents and granule cells. The effect is mediated by ifenprodil-sensitive NMDA ionotropic glutamate receptors and involves an increase of transmitter release at the synapse. Correspondingly, we identify NMDA receptor 2B subunits on the extrasynaptic portion of excitatory nerve terminals. The receptor distribution is spatially related to glutamate-containing synaptic-like microvesicles in the apposed astrocytic processes. This glial regulatory pathway is endogenously activated by neuronal activity–dependent stimulation of purinergic P2Y1 receptors on the astrocytes. Thus, we provide the first combined functional and ultrastructural evidence for a physiological control of synaptic activity via exocytosis of glutamate from astrocytes.


Neuron | 2014

Gliotransmitters Travel in Time and Space

Alfonso Araque; Philip G. Haydon; Stéphane H. R. Oliet; Richard Robitaille; Andrea Volterra

The identification of the presence of active signaling between astrocytes and neurons in a process termed gliotransmission has caused a paradigm shift in our thinking about brain function. However, we are still in the early days of the conceptualization of how astrocytes influence synapses, neurons, networks, and ultimately behavior. In this Perspective, our goal is to identify emerging principles governing gliotransmission and consider the specific properties of this process that endow the astrocyte with unique functions in brain signal integration. We develop and present hypotheses aimed at reconciling confounding reports and define open questions to provide a conceptual framework for future studies. We propose that astrocytes mainly signal through high-affinity slowly desensitizing receptors to modulate neurons and perform integration in spatiotemporal domains complementary to those of neurons.


Current Opinion in Neurobiology | 2001

A neuron–glia signalling network in the active brain

Paola Bezzi; Andrea Volterra

Glial cells are active partners of neurons in processing information and synaptic integration. They receive coded signals from synapses and elaborate modulatory responses. The active properties of glia, including long-range signalling and regulated transmitter release, are beginning to be elucidated. Recent insights suggest that the active brain should no longer be regarded as a circuitry of neuronal contacts, but as an integrated network of interactive neurons and glia.


Nature Neuroscience | 2011

Local Ca2+ detection and modulation of synaptic release by astrocytes

Maria Amalia Di Castro; Julien Chuquet; Nicolas Liaudet; Khaleel Bhaukaurally; Mirko Santello; David Bouvier; Pascale Tiret; Andrea Volterra

Astrocytes communicate with synapses by means of intracellular calcium ([Ca2+]i) elevations, but local calcium dynamics in astrocytic processes have never been thoroughly investigated. By taking advantage of high-resolution two-photon microscopy, we identify the characteristics of local astrocyte calcium activity in the adult mouse hippocampus. Astrocytic processes showed intense activity, triggered by physiological transmission at neighboring synapses. They encoded synchronous synaptic events generated by sparse action potentials into robust regional (∼12 μm) [Ca2+]i elevations. Unexpectedly, they also sensed spontaneous synaptic events, producing highly confined (∼4 μm), fast (millisecond-scale) miniature Ca2+ responses. This Ca2+ activity in astrocytic processes is generated through GTP- and inositol-1,4,5-trisphosphate–dependent signaling and is relevant for basal synaptic function. Thus, buffering astrocyte [Ca2+]i or blocking a receptor mediating local astrocyte Ca2+ signals decreased synaptic transmission reliability in minimal stimulation experiments. These data provide direct evidence that astrocytes are integrated in local synaptic functioning in adult brain.


Neuron | 2011

TNFα Controls Glutamatergic Gliotransmission in the Hippocampal Dentate Gyrus

Mirko Santello; Paola Bezzi; Andrea Volterra

VIDEO ABSTRACT Glutamatergic gliotransmission provides a stimulatory input to excitatory synapses in the hippocampal dentate gyrus. Here, we show that tumor necrosis factor-alpha (TNFα) critically controls this process. With constitutive TNFα present, activation of astrocyte P2Y1 receptors induces localized [Ca(2+)](i) elevations followed by glutamate release and presynaptic NMDA receptor-dependent synaptic potentiation. In preparations lacking TNFα, astrocytes respond with identical [Ca(2+)](i) elevations but fail to induce neuromodulation. We find that TNFα specifically controls the glutamate release step of gliotransmission. In cultured astrocytes lacking TNFα glutamate exocytosis is dramatically slowed down due to altered vesicle docking. Addition of low picomolar TNFα promptly reconstitutes both normal exocytosis in culture and gliotransmission in situ. Alternatively, gliotransmission can be re-established without adding TNFα, by limiting glutamate uptake, which compensates slower release. These findings demonstrate that gliotransmission and its synaptic effects are controlled not only by astrocyte [Ca(2+)](i) elevations but also by permissive/homeostatic factors like TNFα.


Journal of Neurochemistry | 1992

High Sensitivity of Glutamate Uptake to Extracellular Free Arachidonic Acid Levels in Rat Cortical Synaptosomes and Astrocytes

Andrea Volterra; Davide Trotti; Paola Cassutti; Cinzia Tromba; A. Salvaggio; Roberto Cosimo Melcangi; Giorgio Racagni

Abstract: By using both synaptosomes and cultured astrocytes from rat cerebral cortex, we have investigated the inhibitory action of arachidonic acid on the high‐affinity glutamate uptake systems, focusing on the possible physiological significance of this mechanism. Application of arachidonic acid (1–100 μM) to either preparation leads to fast (within 30 s) and largely reversible reduction in the uptake rate. When either melittin (0.2–1 mg/ml), a phospholipase A2 activator, or thimerosal (50–200 μM), which inhibits fatty acid reacylation in phospholipids, is applied to astrocytes, both an enhancement in extracellular free arachidonate and a reduction in glutamate uptake are seen. The two effects display similar dose dependency and time course. In particular, 10% uptake inhibition correlates with 30% elevation in free arachidonate. whereas inhibition ≥60% is paralleled by threefold stimulation of arachidonate release. In the presence of albumin (1–10 mg/ml), a free fatty acid‐binding protein, inhibition by either melittin, thimerosal, or arachidonic acid is prevented and an enhancement of glutamate uptake above the control levels is observed. Our data show that neuronal and glial glutamate transport systems are highly sensitive to changes in extracellular free arachidonate levels and suggest that uptake inhibition may be a relevant mechanism in the action of arachidonic acid at glutamatergic synapses.

Collaboration


Dive into the Andrea Volterra's collaboration.

Top Co-Authors

Avatar

Paola Bezzi

University of Lausanne

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Steven A. Siegelbaum

Howard Hughes Medical Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nicoletta Brunello

University of Modena and Reggio Emilia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge