Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andrea Waeschenbach is active.

Publication


Featured researches published by Andrea Waeschenbach.


Molecular Phylogenetics and Evolution | 2012

Adding resolution to ordinal level relationships of tapeworms (Platyhelminthes: Cestoda) with large fragments of mtDNA.

Andrea Waeschenbach; Bonnie L. Webster; D.T.J. Littlewood

The construction of a stable phylogeny for the Cestoda, indicating the interrelationships of recognised orders and other major lineages, has proceeded iteratively since the group first received attention from phylogenetic systematists. Molecular analyses using nuclear ribosomal RNA gene fragments from the small (ssrDNA) and large (lsrDNA) subunits have been used to test competing evolutionary scenarios based on morphological data but could not arbitrate between some key conflicting hypotheses. To the ribosomal data, we have added a contiguous fragment of mitochondrial (mt) genome data (mtDNA) of partial nad1-trnN-trnP-trnI-trnK-nad3-trnS-trnW-cox1-trnT-rrnL-trnC-partial rrnS, spanning 4034-4447 bp, where new data for this region were generated for 18 species. Bayesian analysis of mtDNA and rDNA as nucleotides, and where appropriate as amino acids, demonstrated that these two classes of genes provide complementary signal across the phylogeny. In all analyses, except when using mt amino acids only, the Gyrocotylidea is sister group to all other Cestoda (Nephroposticophora), and Amphilinidea forms the sister group to the Eucestoda. However, an earliest-diverging position of Amphilinidea is strongly supported in the mt amino acid analysis. Amphilinidea exhibit a unique tRNA arrangement (nad1-trnI-trnL2-trnP-trnK-trnV-trnA-trnN-nad3), whereas Gyrocotylidea shares that of the derived lineages, providing additional evidence of the uniqueness of amphilinid genes and genomes. The addition of mtDNA to the rDNA genes supported the Caryophyllidea as the sister group to (Spathebothriidea+remaining Eucestoda), a hypothesis consistently supported by morphology. This relationship suggests a history of step-wise evolutionary transitions from simple monozoic, unsegmented tapeworms to the more familiar polyzoic, externally segmented (strobilate) forms. All our data partitions recovered Haplobothriidea as the sister group to Diphyllobothriidae. The sister-group relationship between Diphyllidea and Trypanorhyncha, as previously established using rDNA, is not supported by the mt data, although it is supported by the combined mt and rDNA analysis. With regards to the more derived taxa, in all except the mt amino acid analysis, the following topology is supported: (Bothriocephalidea (Litobothriidea (Lecanicephalidea (Rhinebothriidea (Tetraphyllidea, (Acanthobothrium, Proteocephalidea), (Nippotaeniidea, Mesocestoididae, Tetrabothriidea, Cyclophyllidea)))))), where the Tetraphyllidea are paraphyletic. Evidence from the mt data provides strong (nucleotides) to moderate (amino acids) support for Tetraphyllidea forming a group to the inclusion of Proteocephalidea, with the latter consistently forming the sister group to Acanthobothrium. The interrelationships among Nippotaeniidea, Mesocestoididae, Tetrabothriidea and Cyclophyllidea remain ambiguous and require further systematic attention. Mitochondrial and nuclear rDNA data provide conflicting signal for certain parts of the cestode tree. In some cases mt data offer results in line with morphological evidence, such as the interrelationships of the early divergent lineages. Also, Tetraphyllidea, although remaining paraphyletic with the inclusion of the Proteocephalidea, does not include the most derived cestodes; a result which has consistently been obtained with rDNA.


BMC Genomics | 2008

Using 454 technology for long-PCR based sequencing of the complete mitochondrial genome from single Haemonchus contortus (Nematoda)

Aaron R. Jex; Min Hu; D. Timothy J. Littlewood; Andrea Waeschenbach; Robin B. Gasser

BackgroundMitochondrial (mt) genomes represent a rich source of molecular markers for a range of applications, including population genetics, systematics, epidemiology and ecology. In the present study, we used 454 technology (or the GS20, massively parallel picolitre reactor platform) to determine the complete mt genome of Haemonchus contortus (Nematoda: Trichostrongylidae), a parasite of substantial agricultural, veterinary and economic significance. We validate this approach by comparison with mt sequences from publicly available expressed sequence tag (EST) and genomic survey sequence (GSS) data sets.ResultsThe complete mt genome of Haemonchus contortus was sequenced directly from long-PCR amplified template utilizing genomic DNA (~20–40 ng) from a single adult male using 454 technology. A single contig was assembled and compared against mt sequences mined from publicly available EST (NemBLAST) and GSS datasets. The comparison demonstrated that the 454 technology platform is reliable for the sequencing of AT-rich mt genomes from nematodes. The mt genome sequenced for Haemonchus contortus was 14,055 bp in length and was highly AT-rich (78.1%). In accordance with other chromadorean nematodes studied to date, the mt genome of H. contortus contained 36 genes (12 protein coding, 22 tRNAs, rrnL and rrnS) and was similar in structure, size and gene arrangement to those characterized previously for members of the Strongylida.ConclusionThe present study demonstrates the utility of 454 technology for the rapid determination of mt genome sequences from tiny amounts of DNA and reveals a wealth of mt genomic data in current databases available for mining. This approach provides a novel platform for high-throughput sequencing of mt genomes from nematodes and other organisms.


Acta Parasitologica | 2009

The phylogeny of the Lepocreadioidea (Platyhelminthes, Digenea) inferred from nuclear and mitochondrial genes: Implications for their systematics and evolution

Rodney A. Bray; Andrea Waeschenbach; Thomas H. Cribb; Gareth D. Weedall; Patricia Dyal; D. T. J. Littlewood

The phylogenetic relationships of representative species of the superfamily Lepocreadioidea were assessed using partial lsrDNA and nad1 sequences. Forty-two members of the family Lepocreadiidae, six putative members of the Enenteridae, six gyliauchenid species and one Gorgocephalidae, were studied along with 22 species representing 8 families. The Lepocreadioidea is found to be monophyletic, except for the two species of the putative enenterid genus Cadenatella, which are found to be only distantly related to the lepocreadioids. The Lepocreadioidea is formed of five clades in a polytomy, the Gorgocephalidae, a clade containing the Enenteridae and Gyliauchenidae, a small clade of atypical lepocreadiines and the deep-sea lepidapedine lepocreadiids, a small clade consisting of a freshwater form and a group of shallow-water putative lepidapedines and the final clade includes the remaining lepocreadiids. Thus, the generally accepted concept of the Lepocreadiidae is polyphyletic. The Enenteridae (minus Cadenatella) and the Gyliauchenidae are jointly and individually monophyletic, and are sister groups. The nad1 gene on its own places a deep-sea lepocreadiine with the deep-sea lepidapedines, whereas lsrDNA, combined sequences and morphology place this deep-sea lepocreadiine within a group of typical lepocreadiids. It could not be demonstrated that a significant proportion of sites in the nad1 gene evolved under positive selection; this anomalous relationship therefore remains unexplained. Most deep-sea species are in a monophyletic group, a few of which also occur in shallow waters, retaining some characters of the deep-sea clade. Many lepocreadioid species infect herbivorous fish, and it may be that the recently discovered life-cycle involving a bivalve first intermediate host and metacercariae encysted on vegetation is a common life-cycle pattern. The host relationships show no indication of co-speciation, although the host-spectrums exhibited are not random, with related worms tending to utilize related hosts. There are, however, many exceptions. Morphology is found to be of limited value in indicating higher level relationships. For example, even with the benefit of hindsight the gyliauchenids show little morphological similarity to their sister group, the Enenteridae.


Molecular Phylogenetics and Evolution | 2012

A molecular phylogeny of bryozoans.

Andrea Waeschenbach; Paul D. Taylor; D. T. J. Littlewood

We present the most comprehensive molecular phylogeny of bryozoans to date. Our concatenated alignment of two nuclear ribosomal and five mitochondrial genes includes 95 taxa and 13,292 nucleotide sites, of which 8297 were included. The number of new sequences generated during this project are for each gene:ssrDNA (32), lsrDNA (22), rrnL (38), rrnS (35), cox1 (37), cox3 (34), and cytb (44). Our multi-gene analysis provides a largely stable topology across the phylum. The major groups were unambiguously resolved as (Phylactolaemata (Cyclostomata (Ctenostomata, Cheilostomata))), with Ctenostomata paraphyletic. Within Phylactolaemata, (Stephanellidae, Lophopodidae) form the earliest divergent clade. Fredericellidae is not resolved as a monophyletic family and forms a clade together with Plumatellidae, Cristatellidae and Pectinatellidae, with the latter two as sister taxa. Hyalinella and Gelatinella nest within the genus Plumatella. Cyclostome taxa fall into three major clades: i. (Favosipora (Plagioecia, Rectangulata)); ii. (Entalophoroecia ((Diplosolen, Cardioecia) (Frondipora, Cancellata))); and iii. (Articulata ((Annectocyma, Heteroporidae) (Tubulipora (Tennysonia, Idmidronea)))), with suborders Tubuliporina and Cerioporina, and family Plagioeciidae each being polyphyletic. Ctenostomata is composed of three paraphyletic clades to the inclusion of Cheilostomata: ((Alcyonidium, Flustrellidra) (Paludicella (Anguinella, Triticella)) (Hislopia (Bowerbankia, Amathia)) Cheilostomata); Flustrellidra nests within the genus Alcyonidium, and Amathia nests within the genus Bowerbankia. Suborders Carnosa and Stolonifera are not monophyletic. Within the cheilostomes, Malacostega is paraphyletic to the inclusion of all other cheilostomes. Conopeum is the most early divergent cheilostome, forming the sister group to ((Malacostega, Scrupariina, Inovicellina) ((Hippothoomorpha, Flustrina) (Lepraliomorpha, Umbonulomorpha))); Flustrina is paraphyletic to the inclusion of the hippothoomorphs; neither Lepraliomorpha nor Umbonulomorpha is monophyletic. Ascophorans are polyphyletic, with hippothoomorphs grouping separately from lepraliomorphs and umbonulomorphs; no cribrimorphs were included in the analysis. Results are discussed in the light of molecular and morphological evidence. Ancestral state reconstruction of larval strategy in Gymnolaemata revealed planktotrophy and lecithotrophy as equally parsimonious solutions for the ancestral condition. More comprehensive taxon sampling is expected to clarify this result. We discuss the extent of non-bryozoan contaminant sequences deposited in GenBank and their impact on the reconstruction of metazoan phylogenies and those of bryozoan interrelationships.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Mating behavior and the evolution of sperm design.

Lukas Schärer; D. T. J. Littlewood; Andrea Waeschenbach; W. Yoshida; Dita B. Vizoso

Sperm are the most diverse of all animal cell types, and much of the diversity in sperm design is thought to reflect adaptations to the highly variable conditions under which sperm function and compete to achieve fertilization. Recent work has shown that these conditions often evolve rapidly as a consequence of multiple mating, suggesting a role for sexual selection and sexual conflict in the evolution of sperm design. However, very little of the striking diversity in sperm design is understood functionally, particularly in internally fertilizing organisms. We use phylogenetic comparative analyses covering 16 species of the hermaphroditic flatworm genus Macrostomum to show that a complex sperm design is associated with reciprocal mating and that this complexity is lost secondarily when hypodermic insemination—sperm injection through the epidermis—evolves. Specifically, the complex sperm design, which includes stiff lateral bristles, is likely a male persistence trait associated with sexual conflicts over the fate of received ejaculates and linked to female resistance traits, namely an intriguing postcopulatory sucking behavior and a thickened epithelium of the sperm-receiving organ. Our results suggest that the interactions between sperm donor, sperm, and sperm recipient can change drastically when hypodermic insemination evolves, involving convergent evolution of a needle-like copulatory organ, a simpler sperm design, and a simpler female genital morphology. Our study documents that a shift in the mating behavior may alter fundamentally the conditions under which sperm compete and thereby lead to a drastic change in sperm design.


BMC Genomics | 2009

The mitochondrial genomes of Ancylostoma caninum and Bunostomum phlebotomum - two hookworms of animal health and zoonotic importance.

Aaron R. Jex; Andrea Waeschenbach; Min Hu; Jan A. van Wyk; Ian Beveridge; D. Timothy J. Littlewood; Robin B. Gasser

BackgroundHookworms are blood-feeding nematodes that parasitize the small intestines of many mammals, including humans and cattle. These nematodes are of major socioeconomic importance and cause disease, mainly as a consequence of anaemia (particularly in children or young animals), resulting in impaired development and sometimes deaths. Studying genetic variability within and among hookworm populations is central to addressing epidemiological and ecological questions, thus assisting in the control of hookworm disease. Mitochondrial (mt) genes are known to provide useful population markers for hookworms, but mt genome sequence data are scant.ResultsThe present study characterizes the complete mt genomes of two species of hookworm, Ancylostoma caninum (from dogs) and Bunostomum phlebotomum (from cattle), each sequenced (by 454 technology or primer-walking), following long-PCR amplification from genomic DNA (~20–40 ng) isolated from individual adult worms. These mt genomes were 13717 bp and 13790 bp in size, respectively, and each contained 12 protein coding, 22 transfer RNA and 2 ribosomal RNA genes, typical for other secernentean nematodes. In addition, phylogenetic analysis (by Bayesian inference and maximum likelihood) of concatenated mt protein sequence data sets for 12 nematodes (including Ancylostoma caninum and Bunostomum phlebotomum), representing the Ascaridida, Spirurida and Strongylida, was conducted. The analysis yielded maximum statistical support for the formation of monophyletic clades for each recognized nematode order assessed, except for the Rhabditida.ConclusionThe mt genomes characterized herein represent a rich source of population genetic markers for epidemiological and ecological studies. The strong statistical support for the construction of phylogenetic clades and consistency between the two different tree-building methods employed indicate the value of using whole mt genome data sets for systematic studies of nematodes. The grouping of the Spirurida and Ascaridida to the exclusion of the Strongylida was not supported in the present analysis, a finding which conflicts with the current evolutionary hypothesis for the Nematoda based on nuclear ribosomal gene data.


Acta Parasitologica | 2008

In search of mitochondrial markers for resolving the phylogeny of cyclophyllidean tapeworms (Platyhelminthes, Cestoda) — a test study with Davaineidae

D. Timothy J. Littlewood; Andrea Waeschenbach; Pavel N. Nikolov

The most species rich order of tapeworms is the Cyclophyllidea and prior to wide-scale sampling of these worms for phylogenetics, we wished to develop reliable PCR primers that would capture fragments of mitochondrial (mt) DNA with phylogenetic utility across the order. Nuclear ribosomal RNA gene sequences are well-established and valuable markers for resolving flatworm interrelationships spanning a wide range of taxonomic divergences, but fail to provide resolution amongst recently diverged lineages. Entire mt genomes of selected cyclophyllidean tapeworms are available on GenBank, and we used these to design PCR primers to amplify mtDNA from cox1, rrnL and nad1 for a range of cyclophyllideans (7 davaineids, 1 hymenolepidid and 1 dilepidid) and selected outgroups (Tetrabothrius sp. and Mesocestoides sp.). A combined nuclear and mt gene data set was used to estimate a reference phylogeny and the performance of the individual genes was compared to this. Although nuclear and mt genes each contributed to the structure and stability of the phylogenetic estimate, strongest nodal support was provided by nuclear data amongst the basal lineages and by mt data amongst the most recently diverged lineages. The apparent complementarity afforded by combining nuclear and mt data was compromised by these data partitions providing conflicting signal at poorly supported nodes. Nevertheless, we argue for a combined evidence approach. PCR primers that amplify rrnL were designed and tested successfully against a diversity of cyclophyllideans; rrnL and nad1 appeared to be more informative than the fragment of cox1. The genus Raillietina was not supported by molecular evidence. The new primers will likely provide considerable resolution to estimates of cyclophyllidean interrelationships in future studies.


PLOS Neglected Tropical Diseases | 2008

The Mitochondrial Genome of Toxocara canis

Aaron R. Jex; Andrea Waeschenbach; D. Timothy J. Littlewood; Min Hu; Robin B. Gasser

Toxocara canis (Ascaridida: Nematoda), which parasitizes (at the adult stage) the small intestine of canids, can be transmitted to a range of other mammals, including humans, and can cause the disease toxocariasis. Despite its significance as a pathogen, the genetics, epidemiology and biology of this parasite remain poorly understood. In addition, the zoonotic potential of related species of Toxocara, such as T. cati and T. malaysiensis, is not well known. Mitochondrial DNA is known to provide genetic markers for investigations in these areas, but complete mitochondrial genomic data have been lacking for T. canis and its congeners. In the present study, the mitochondrial genome of T. canis was amplified by long-range polymerase chain reaction (long PCR) and sequenced using a primer-walking strategy. This circular mitochondrial genome was 14162 bp and contained 12 protein-coding, 22 transfer RNA, and 2 ribosomal RNA genes consistent for secernentean nematodes, including Ascaris suum and Anisakis simplex (Ascaridida). The mitochondrial genome of T. canis provides genetic markers for studies into the systematics, population genetics and epidemiology of this zoonotic parasite and its congeners. Such markers can now be used in prospecting for cryptic species and for exploring host specificity and zoonotic potential, thus underpinning the prevention and control of toxocariasis in humans and other hosts.


Molecular Phylogenetics and Evolution | 2009

First molecular estimate of cyclostome bryozoan phylogeny confirms extensive homoplasy among skeletal characters used in traditional taxonomy

Andrea Waeschenbach; Cymon J. Cox; D. T. J. Littlewood; Joanne S. Porter; Paul D. Taylor

The Cyclostomata are the only extant representatives of the class Stenolaemata, an ancient group of exclusively marine bryozoans. Previous cladistic analyses of cyclostome bryozoans, based exclusively on skeletal characters, revealed extensive homoplasy amongst morphological traits. This study presents the first molecular phylogeny for Cyclostomata and confirms the previous findings of homoplasy. Almost complete lsr and ssrDNA fragments were sequenced for 22 taxa of cyclostome bryozoans, plus the outgroup (Pectinatella magnifica and Flustrellidra hispida). Three well-supported major clades were found, but their inter relationships are unclear. Suborder Tubuliporina was polyphyletic, with representatives found in all three major clades. The tubuliporine family Plagioeciidae was resolved as polyphyletic; Plagioecia grouped with Lichenoporidae and Densiporidae, whereas Entalophoroecia, Diplosolen and Cardioecia formed a paraphyletic subgroup that included Frondiporidae and Horneridae. The suborder Cerioporina was also polyphyletic; Densiporidae grouped with Plagioecia and Lichenoporidae, whereas Heteroporidae nested in a paraphyletic subgroup of tubuliporines, with the Crisiidae forming the sister-group to this clade. Cinctiporidae could not be placed unambiguously. Morphological character mapping was performed in order to find evidence favouring one of the three possible hypotheses of inter relationships of the major clades, but the results were ambiguous. This study questions the extent to which morphological characters can be used in phylogenetic studies of cyclostome bryozoans, both fossil and extant, and how far their morphology is the result of ecophenotypic plasticity and convergent evolution. The finding of numerous non-monophyletic taxa has implications for extinction rate assessment and for the use of fossil cyclostomes to calibrate molecular trees.


Zoologica Scripta | 2014

Cryptic species in the cosmopolitan Bugula neritina complex (Bryozoa, Cheilostomata)

Karin H. Fehlauer-Ale; Joshua A. Mackie; Grace E. Lim-Fong; Ezequiel Ale; Marcio R. Pie; Andrea Waeschenbach

Previous analyses of the mitochondrial gene cytochrome c oxidase subunit 1 (COI) and γ‐proteobacterial endosymbiont diversity have suggested that the marine bryozoan Bugula neritina is a complex of three cryptic species, namely Types S, D and N. Types D and N were previously reported to have restricted distributions along California (western USA) and Delaware and Connecticut (eastern USA), respectively, whereas Type S is considered widespread in tropical, subtropical and temperate regions due to anthropogenic transport. Here, Bayesian species delimitation analysis of a data set composed of two mitochondrial (COI and large ribosomal RNA subunit [16S]) and two nuclear genes (dynein light chain roadblock type‐2 protein [DYN] and voltage‐dependent anion‐selective channel protein [VDAC]) demonstrated that Types S, D and N correspond to three biological species. This finding was significantly supported, in spite of the combinations of priors applied for ancestral population size and root age. Furthermore, COI sequences were used to assess the introduction patterns of the cosmopolitan Type S species. Two COI haplotypes of Type S (S1a and S1d) were found occurring at a global scale. Mantel tests showed correlation between these haplotypes and local sea surface temperature tolerance. Accordingly, the distributions of Type S haplotypes may reflect intraspecific temperature tolerance variation, in addition to the role of introduction vectors. Finally, we show that the Type N may also have been introduced widely, as this species was found for the first time in Central California and north‐eastern Australia.

Collaboration


Dive into the Andrea Waeschenbach's collaboration.

Top Co-Authors

Avatar

D. Timothy J. Littlewood

American Museum of Natural History

View shared research outputs
Top Co-Authors

Avatar

Rodney A. Bray

American Museum of Natural History

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tomáš Scholz

Academy of Sciences of the Czech Republic

View shared research outputs
Top Co-Authors

Avatar

Paul D. Taylor

American Museum of Natural History

View shared research outputs
Top Co-Authors

Avatar

D.T.J. Littlewood

American Museum of Natural History

View shared research outputs
Top Co-Authors

Avatar

Jan Brabec

Academy of Sciences of the Czech Republic

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge