Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andrea Zatkova is active.

Publication


Featured researches published by Andrea Zatkova.


American Journal of Human Genetics | 2000

High Frequency of Alkaptonuria in Slovakia: Evidence for the Appearance of Multiple Mutations in HGO Involving Different Mutational Hot Spots

Andrea Zatkova; Daniel Beltrán-Valero de Bernabé; Poláková H; Marek Zvarík; Vladimir Bošák; Vladimír Ferák; Ludovít Kádasi; Santiago Rodríguez de Córdoba

Alkaptonuria (AKU) is an autosomal recessive disorder caused by the deficiency of homogentisate 1,2 dioxygenase (HGO) activity. AKU shows a very low prevalence (1:100,000-250,000) in most ethnic groups. One notable exception is in Slovakia, where the incidence of AKU rises to 1:19,000. This high incidence is difficult to explain by a classical founder effect, because as many as 10 different AKU mutations have been identified in this relatively small country. We have determined the allelic associations of 11 HGO intragenic polymorphisms for 44 AKU chromosomes from 20 Slovak pedigrees. These data were compared to the HGO haplotype data available in our laboratory for >80 AKU chromosomes from different European and non-European countries. The results show that common European AKU chromosomes have had only a marginal contribution to the Slovak AKU gene pool. Six of the ten Slovak AKU mutations, including the prevalent G152fs, G161R, G270R, and P370fs mutations, most likely originated in Slovakia. Data available for 17 Slovak AKU pedigrees indicate that most of the AKU chromosomes have their origins in a single very small region in the Carpathian mountains, in the northwestern part of the country. Since all six Slovak AKU mutations are associated with HGO mutational hot spots, we suggest that an increased mutation rate at the HGO gene is responsible for the clustering of AKU mutations in such a small geographical region.


Journal of Inherited Metabolic Disease | 2011

An update on molecular genetics of Alkaptonuria (AKU).

Andrea Zatkova

Alkaptonuria (AKU) is an autosomal recessive disorder caused by a deficiency of homogentisate 1,2 dioxygenase (HGD) and characterized by homogentisic aciduria, ochronosis, and ochronotic arthritis. The defect is caused by mutations in the HGD gene, which maps to the human chromosome 3q21–q23. AKU shows a very low prevalence (1:100,000–250,000) in most ethnic groups, but there are countries such as Slovakia and the Dominican Republic in which the incidence of this disorder rises to as much as 1:19,000. In this work, we summarize the genetic aspects of AKU in general and the distribution of all known disease-causing mutations reported so far. We focus on special features of AKU in Slovakia, which is one of the countries with an increased incidence of this rare metabolic disorder.


Annals of the Rheumatic Diseases | 2016

Suitability Of Nitisinone In Alkaptonuria 1 (SONIA 1): an international, multicentre, randomised, open-label, no-treatment controlled, parallel-group, dose-response study to investigate the effect of once daily nitisinone on 24-h urinary homogentisic acid excretion in patients with alkaptonuria after 4 weeks of treatment

Lakshminarayan Ranganath; Anna Milan; Andrew T Hughes; John Dutton; Richard Fitzgerald; M. C. Briggs; Helen Bygott; Eftychia E Psarelli; Trevor Cox; J.A. Gallagher; Jonathan C. Jarvis; Christa van Kan; Anthony K Hall; Dinny Laan; Birgitta Olsson; Johan Szamosi; Mattias Rudebeck; Torbjörn Kullenberg; Arvid Cronlund; Lennart Svensson; Carin Junestrand; Hana Ayoob; Oliver Timmis; Nicolas Sireau; Kim-Hanh Le Quan Sang; Federica Genovese; Daniela Braconi; Annalisa Santucci; Martina Nemethova; Andrea Zatkova

Background Alkaptonuria (AKU) is a serious genetic disease characterised by premature spondyloarthropathy. Homogentisate-lowering therapy is being investigated for AKU. Nitisinone decreases homogentisic acid (HGA) in AKU but the dose-response relationship has not been previously studied. Methods Suitability Of Nitisinone In Alkaptonuria 1 (SONIA 1) was an international, multicentre, randomised, open-label, no-treatment controlled, parallel-group, dose-response study. The primary objective was to investigate the effect of different doses of nitisinone once daily on 24-h urinary HGA excretion (u-HGA24) in patients with AKU after 4 weeks of treatment. Forty patients were randomised into five groups of eight patients each, with groups receiving no treatment or 1 mg, 2 mg, 4 mg and 8 mg of nitisinone. Findings A clear dose-response relationship was observed between nitisinone and the urinary excretion of HGA. At 4 weeks, the adjusted geometric mean u-HGA24 was 31.53 mmol, 3.26 mmol, 1.44 mmol, 0.57 mmol and 0.15 mmol for the no treatment or 1 mg, 2 mg, 4 mg and 8 mg doses, respectively. For the most efficacious dose, 8 mg daily, this corresponds to a mean reduction of u-HGA24 of 98.8% compared with baseline. An increase in tyrosine levels was seen at all doses but the dose-response relationship was less clear than the effect on HGA. Despite tyrosinaemia, there were no safety concerns and no serious adverse events were reported over the 4 weeks of nitisinone therapy. Conclusions In this study in patients with AKU, nitisinone therapy decreased urinary HGA excretion to low levels in a dose-dependent manner and was well tolerated within the studied dose range. Trial registration number EudraCT number: 2012-005340-24. Registered at ClinicalTrials.gov: NCTO1828463.


European Journal of Human Genetics | 2016

Twelve novel HGD gene variants identified in 99 alkaptonuria patients: focus on 'black bone disease' in Italy.

Martina Nemethova; Jan Radvanszky; Ludevit Kadasi; David B. Ascher; Douglas Ev Pires; Tom L. Blundell; Berardino Porfirio; Alessandro Mannoni; Annalisa Santucci; Lia Milucci; Silvia Sestini; Gianfranco Biolcati; Fiammetta Sorge; Caterina Aurizi; Robert Aquaron; Mohammed Alsbou; Charles Marques Lourenço; Kanakasabapathi Ramadevi; Lakshminarayan Ranganath; J.A. Gallagher; Christa van Kan; Anthony K Hall; Birgitta Olsson; Nicolas Sireau; Hana Ayoob; Oliver Timmis; Kim Hanh Le Quan Sang; Federica Genovese; Richard Imrich; Jozef Rovensky

Alkaptonuria (AKU) is an autosomal recessive disorder caused by mutations in homogentisate-1,2-dioxygenase (HGD) gene leading to the deficiency of HGD enzyme activity. The DevelopAKUre project is underway to test nitisinone as a specific treatment to counteract this derangement of the phenylalanine-tyrosine catabolic pathway. We analysed DNA of 40 AKU patients enrolled for SONIA1, the first study in DevelopAKUre, and of 59 other AKU patients sent to our laboratory for molecular diagnostics. We identified 12 novel DNA variants: one was identified in patients from Brazil (c.557T>A), Slovakia (c.500C>T) and France (c.440T>C), three in patients from India (c.469+6T>C, c.650–85A>G, c.158G>A), and six in patients from Italy (c.742A>G, c.614G>A, c.1057A>C, c.752G>A, c.119A>C, c.926G>T). Thus, the total number of potential AKU-causing variants found in 380 patients reported in the HGD mutation database is now 129. Using mCSM and DUET, computational approaches based on the protein 3D structure, the novel missense variants are predicted to affect the activity of the enzyme by three mechanisms: decrease of stability of individual protomers, disruption of protomer-protomer interactions or modification of residues in the region of the active site. We also present an overview of AKU in Italy, where so far about 60 AKU cases are known and DNA analysis has been reported for 34 of them. In this rather small group, 26 different HGD variants affecting function were described, indicating rather high heterogeneity. Twelve of these variants seem to be specific for Italy.


Clinical Genetics | 2003

Rapid detection methods for five HGO gene mutations causing alkaptonuria.

Andrea Zatkova; A Chmelikova; Poláková H; Ludevit Kadasi

Alkaptonuria (AKU) is an autosomal recessive disorder caused by the deficiency of homogentisate 1,2 dioxygenase (HGO) activity. The disease is characterized by homogentisic aciduria, ochronosis and ochronotic arthritis. AKU shows a very low prevalence (1:250 000), in most ethnic groups. Altogether 43 HGO mutations have been identified in approximately 100 patients. In Slovakia, however, the incidence of this disorder rises up to 1:19 000, and 10 different AKU mutations have been identified in this relatively small country. Here, we report detection methods developed for rapid identification of five HGO mutations. PCR primers were designed enabling detection of mutations IVS5 + 1G→A, R58fs, and V300G by restriction digestion of amplification‐created restriction sites (ACRS). Mutation G152fs is readily identified by heteroduplex analysis, and G161R by amplification refractory mutation system (ARMS) PCR.


Annals of Human Genetics | 2013

Thirty-Nine Novel Neurofibromatosis 1 (NF1) Gene Mutations Identified in Slovak Patients

Martina Nemethova; Anna Bolcekova; Denisa Ilencikova; Darina Durovcikova; Katarina Hlinkova; Anna Hlavata; Laszlo Kovacs; Ludevit Kadasi; Andrea Zatkova

We performed a complex analysis of the neurofibromatosis type 1 (NF1) gene in Slovakia based on direct cDNA sequencing supplemented by multiple ligation dependent probe amplification (MLPA) analysis. All 108 patients had café‐au‐lait spots, 85% had axilary and/or inguinal freckling, 61% neurofibromas, 36% Lisch nodules of the iris and 31% optic pathway glioma, 5% suffered from typical skeletal disorders, and 51% of patients had family members with NF1.


JIMD reports | 2012

Identification of 11 Novel Homogentisate 1,2 Dioxygenase Variants in Alkaptonuria Patients and Establishment of a Novel LOVD-Based HGD Mutation Database

Andrea Zatkova; Tatiana Sedlackova; Jan Radvansky; Poláková H; Martina Nemethova; Robert Aquaron; Ismail Dursun; Jeannette L. Usher; Ludevit Kadasi

Enzymatic loss in alkaptonuria (AKU), an autosomal recessive disorder, is caused by mutations in the homogentisate 1,2 dioxygenase (HGD) gene, which decrease or completely inactivate the function of the HGD protein to metabolize homogentisic acid (HGA). AKU shows a very low prevalence (1:100,000-250,000) in most ethnic groups, but there are countries with much higher incidence, such as Slovakia and the Dominican Republic. In this work, we report 11 novel HGD mutations identified during analysis of 36 AKU patients and 41 family members from 27 families originating from 9 different countries, mainly from Slovakia and France. In Slovak patients, we identified two additional mutations, thus a total number of HGD mutations identified in this small country is 12. In order to record AKU-causing mutations and variants of the HGD gene, we have created a HGD mutation database that is open for future submissions and is available online ( http://hgddatabase.cvtisr.sk/ ). It is founded on the Leiden Open (source) Variation Database (LOVD) system and includes data from the original AKU database ( http://www.alkaptonuria.cib.csic.es ) and also all so far reported variants and AKU patients. Where available, HGD-haplotypes associated with the mutations are also presented. Currently, this database contains 148 unique variants, of which 115 are reported pathogenic mutations. It provides a valuable tool for information exchange in AKU research and care fields and certainly presents a useful data source for genotype-phenotype correlations and also for future clinical trials.


Annals of Human Genetics | 2014

Mutation Screening of the HGD Gene Identifies a Novel Alkaptonuria Mutation with Significant Founder Effect and High Prevalence

Srinivasan Sakthivel; Andrea Zatkova; Martina Nemethova; Milan Surovy; Ludevit Kadasi; Madurai P. Saravanan

Alkaptonuria (AKU) is an autosomal recessive disorder; caused by the mutations in the homogentisate 1, 2‐dioxygenase (HGD) gene located on Chromosome 3q13.33. AKU is a rare disorder with an incidence of 1: 250,000 to 1: 1,000,000, but Slovakia and the Dominican Republic have a relatively higher incidence of 1: 19,000. Our study focused on studying the frequency of AKU and identification of HGD gene mutations in nomads. HGD gene sequencing was used to identify the mutations in alkaptonurics. For the past four years, from subjects suspected to be clinically affected, we found 16 positive cases among a randomly selected cohort of 41 Indian nomads (Narikuravar) settled in the specific area of Tamil Nadu, India. HGD gene mutation analysis showed that 11 of these patients carry the same homozygous splicing mutation c.87 + 1G > A; in five cases, this mutation was found to be heterozygous, while the second AKU‐causing mutation was not identified in these patients. This result indicates that the founder effect and high degree of consanguineous marriages have contributed to AKU among nomads. Eleven positive samples were homozygous for a novel mutation c.87 + 1G > A, that abolishes an intron 2 donor splice site and most likely causes skipping of exon 2. The prevalence of AKU observed earlier seems to be highly increased in people of nomadic origin.


General Physiology and Biophysics | 2013

Analysis of Leucine-rich repeat kinase 2 (LRRK2) and Parkinson protein 2 (parkin, PARK2) genes mutations in Slovak Parkinson disease patients

Csaba Bognár; Marian Baldovic; Jan Benetin; Ludovit Kadasi; Andrea Zatkova

Parkinson disease (PD) is a chronic neurodegenerative movement disorder characterized by selective loss of nigrostriatal dopaminergic neurons and formation of Lewy bodies. Clinical manifestations include motor impairments involving tremor, bradykinesia, postural instability and rigidity. Using dHPLC method we screened exons 31, 35, 41, 48 of the Leucine-rich repeat kinase 2 (LRRK2) gene and exons 2, 6 and 7 of Parkinson protein 2 (parkin, PARK2) genes in a cohort of 216 consecutive, unrelated Slovak patients with familial or sporadic PD, including early and late onset. By this means we aimed to detect the most common pathogenic mutations within LRRK2 (Arg1441Cys, Arg1441Gly, Arg1628Pro, Tyr1699Cys, Gly2019Ser, Ile2020Thr, Gly2385Arg) and parkin genes responsible for late and early onset forms of disease, respectively. However, none of these mutations was identified in our cohort. Heterozygous point mutation p.Arg275Trp in exon 7 of parkin gene was identified in one patient with age at onset 61 years. Furthermore, we observed the presence of one exonic (LRRK2 ex 48: 7155A>G) and eight intronic polymorphisms (in LRRK2: IVS35+23T>A, IVS47-91insGCCAT, IVS47-91insGCAT, IVS47-41A>G, IVS47-9delT, IVS47-20C>T, IVS47-90A>G, in parkin: IVS2+25T>C), three of which were novel.


BMC Medical Informatics and Decision Making | 2017

ApreciseKUre: an approach of Precision Medicine in a Rare Disease

Ottavia Spiga; Vittoria Cicaloni; Andrea Bernini; Andrea Zatkova; Annalisa Santucci

BackgroundAlkaptonuria (AKU; OMIM:203500) is a classic Mendelian genetic disorder described by Garrod already in 1902. It causes urine to turn black upon exposure to air and also leads to ochronosis as well as early osteoarthritis.Main body of the abstractOur objective is the implementation of a Precision Medicine (PM) approach to AKU. We present here a novel ApreciseKUre database facilitating the collection, integration and analysis of patient data in order to create an AKU-dedicated “PM Ecosystem” in which genetic, biochemical and clinical resources can be shared among registered researchers. In order to exploit the ApreciseKUre database, we developed an analytic method based on Pearson’s correlation coefficient and P value that generates as refreshable correlation matrix. A complete statistical analysis is obtained by associating every pair of parameters to examine the dependence between multiple variables at the same time.Short conclusionsEmploying this analytic approach, we showed that some clinically used biomarkers are not suitable as prognostic biomarkers in AKU for a more reliable patients’ clinical monitoring. We believe this database could be a good starting point for the creation of a new clinical management tool in AKU, which will lead to the development of a deeper knowledge network on the disease and will advance its treatment. Moreover, our approach can serve as a personalization model paradigm for other inborn errors of metabolism or rare diseases in general.

Collaboration


Dive into the Andrea Zatkova's collaboration.

Top Co-Authors

Avatar

Ludevit Kadasi

Comenius University in Bratislava

View shared research outputs
Top Co-Authors

Avatar

Martina Nemethova

Slovak Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Poláková H

Slovak Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Denisa Ilencikova

Comenius University in Bratislava

View shared research outputs
Top Co-Authors

Avatar

Anna Bolcekova

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge