Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andreas A. Werdich is active.

Publication


Featured researches published by Andreas A. Werdich.


Nature | 2010

Primary contribution to zebrafish heart regeneration by gata4+ cardiomyocytes

Kazu Kikuchi; Jennifer E. Holdway; Andreas A. Werdich; Ryan M. Anderson; Yi Fang; Gregory F. Egnaczyk; Todd Evans; Calum A. MacRae; Didier Y. R. Stainier; Kenneth D. Poss

Recent studies indicate that mammals, including humans, maintain some capacity to renew cardiomyocytes throughout postnatal life. Yet, there is little or no significant cardiac muscle regeneration after an injury such as acute myocardial infarction. By contrast, zebrafish efficiently regenerate lost cardiac muscle, providing a model for understanding how natural heart regeneration may be blocked or enhanced. In the absence of lineage-tracing technology applicable to adult zebrafish, the cellular origins of newly regenerated cardiac muscle have remained unclear. Using new genetic fate-mapping approaches, here we identify a population of cardiomyocytes that become activated after resection of the ventricular apex and contribute prominently to cardiac muscle regeneration. Through the use of a transgenic reporter strain, we found that cardiomyocytes throughout the subepicardial ventricular layer trigger expression of the embryonic cardiogenesis gene gata4 within a week of trauma, before expression localizes to proliferating cardiomyocytes surrounding and within the injury site. Cre-recombinase-based lineage-tracing of cells expressing gata4 before evident regeneration, or of cells expressing the contractile gene cmlc2 before injury, each labelled most cardiac muscle in the ensuing regenerate. By optical voltage mapping of surface myocardium in whole ventricles, we found that electrical conduction is re-established between existing and regenerated cardiomyocytes between 2 and 4 weeks post-injury. After injury and prolonged fibroblast growth factor receptor inhibition to arrest cardiac regeneration and enable scar formation, experimental release of the signalling block led to gata4 expression and morphological improvement of the injured ventricular wall without loss of scar tissue. Our results indicate that electrically coupled cardiac muscle regenerates after resection injury, primarily through activation and expansion of cardiomyocyte populations. These findings have implications for promoting regeneration of the injured human heart.


Development | 2011

The regenerative capacity of zebrafish reverses cardiac failure caused by genetic cardiomyocyte depletion

Jinhu Wang; Daniela Panáková; Kazu Kikuchi; Jennifer E. Holdway; Matthew Gemberling; James S. Burris; Sumeet Pal Singh; Amy L. Dickson; Yi-Fan Lin; M. Khaled Sabeh; Andreas A. Werdich; Deborah Yelon; Calum A. MacRae; Kenneth D. Poss

Natural models of heart regeneration in lower vertebrates such as zebrafish are based on invasive surgeries causing mechanical injuries that are limited in size. Here, we created a genetic cell ablation model in zebrafish that facilitates inducible destruction of a high percentage of cardiomyocytes. Cell-specific depletion of over 60% of the ventricular myocardium triggered signs of cardiac failure that were not observed after partial ventricular resection, including reduced animal exercise tolerance and sudden death in the setting of stressors. Massive myocardial loss activated robust cellular and molecular responses by endocardial, immune, epicardial and vascular cells. Destroyed cardiomyocytes fully regenerated within several days, restoring cardiac anatomy, physiology and performance. Regenerated muscle originated from spared cardiomyocytes that acquired ultrastructural and electrophysiological characteristics of de-differentiation and underwent vigorous proliferation. Our study indicates that genetic depletion of cardiomyocytes, even at levels so extreme as to elicit signs of cardiac failure, can be reversed by natural regenerative capacity in lower vertebrates such as zebrafish.


American Journal of Human Genetics | 2013

Fine Mapping of the 1p36 Deletion Syndrome Identifies Mutation of PRDM16 as a Cause of Cardiomyopathy

Anne-Karin Arndt; Sebastian Schafer; Jörg-Detlef Drenckhahn; M. Khaled Sabeh; Eva Plovie; Almuth Caliebe; Eva Klopocki; Gabriel Musso; Andreas A. Werdich; Hermann Kalwa; Matthias Heinig; Robert F. Padera; Katharina Wassilew; Julia Bluhm; Christine Harnack; Janine Martitz; Paul J.R. Barton; Matthias Greutmann; Felix Berger; Norbert Hubner; Reiner Siebert; Hans-Heiner Kramer; Stuart A. Cook; Calum A. MacRae; Sabine Klaassen

Deletion 1p36 syndrome is recognized as the most common terminal deletion syndrome. Here, we describe the loss of a gene within the deletion that is responsible for the cardiomyopathy associated with monosomy 1p36, and we confirm its role in nonsyndromic left ventricular noncompaction cardiomyopathy (LVNC) and dilated cardiomyopathy (DCM). With our own data and publically available data from array comparative genomic hybridization (aCGH), we identified a minimal deletion for the cardiomyopathy associated with 1p36del syndrome that included only the terminal 14 exons of the transcription factor PRDM16 (PR domain containing 16), a gene that had previously been shown to direct brown fat determination and differentiation. Resequencing of PRDM16 in a cohort of 75 nonsyndromic individuals with LVNC detected three mutations, including one truncation mutant, one frameshift null mutation, and a single missense mutant. In addition, in a series of cardiac biopsies from 131 individuals with DCM, we found 5 individuals with 4 previously unreported nonsynonymous variants in the coding region of PRDM16. None of the PRDM16 mutations identified were observed in more than 6,400 controls. PRDM16 has not previously been associated with cardiac disease but is localized in the nuclei of cardiomyocytes throughout murine and human development and in the adult heart. Modeling of PRDM16 haploinsufficiency and a human truncation mutant in zebrafish resulted in both contractile dysfunction and partial uncoupling of cardiomyocytes and also revealed evidence of impaired cardiomyocyte proliferative capacity. In conclusion, mutation of PRDM16 causes the cardiomyopathy in 1p36 deletion syndrome as well as a proportion of nonsyndromic LVNC and DCM.


Nature | 2010

Wnt11 patterns a myocardial electrical gradient through regulation of the L-type Ca 2+ channel

Daniela Panáková; Andreas A. Werdich; Calum A. MacRae

Electrical gradients are critical for many biological processes, including the normal function of excitable tissues, left–right patterning, organogenesis and wound healing. The fundamental mechanisms that regulate the establishment and maintenance of such electrical polarities are poorly understood. Here we identify a gradient of electrical coupling across the developing ventricular myocardium using high-speed optical mapping of transmembrane potentials and calcium concentrations in the zebrafish heart. We excluded a role for differences in cellular excitability, connexin localization, tissue geometry and mechanical inputs, but in contrast we were able to demonstrate that non-canonical Wnt11 signals are required for the genesis of this myocardial electrical gradient. Although the traditional planar cell polarity pathway is not involved, we obtained evidence that Wnt11 acts to set up this gradient of electrical coupling through effects on transmembrane Ca2+ conductance mediated by the L-type calcium channel. These data reveal a previously unrecognized role for Wnt/Ca2+ signalling in establishing an electrical gradient in the plane of the developing cardiac epithelium through modulation of ion-channel function. The regulation of cellular coupling through such mechanisms may be a general property of non-canonical Wnt signals.


Experimental Biology and Medicine | 2011

Hierarchical architecture influences calcium dynamics in engineered cardiac muscle.

Terrence Pong; William J. Adams; Mark-Anthony Bray; Adam W. Feinberg; Sean P. Sheehy; Andreas A. Werdich; Kevin Kit Parker

Changes in myocyte cell shape and tissue structure are concurrent with changes in electromechanical function in both the developing and diseased heart. While the anisotropic architecture of cardiac tissue is known to influence the propagation of the action potential, the influence of tissue architecture and its potential role in regulating excitation–contraction coupling (ECC) are less well defined. We hypothesized that changes in the shape and the orientation of cardiac myocytes induced by spatial arrangement of the extracellular matrix (ECM) affects ECC. To test this hypothesis, we isolated and cultured neonatal rat ventricular cardiac myocytes on various micropatterns of fibronectin where they self-organized into tissues with varying degrees of anisotropy. We then measured the morphological features of these engineered myocardial tissues across several hierarchical dimensions by measuring cellular aspect ratio, myocyte area, nuclear density and the degree of cytoskeletal F-actin alignment. We found that when compared with isotropic tissues, anisotropic tissues have increased cellular aspect ratios, increased nuclear densities, decreased myocyte cell areas and smaller variances in actin alignment. To understand how tissue architecture influences cardiac function, we studied the role of anisotropy on intracellular calcium ([Ca2+]i) dynamics by characterizing the [Ca2+]i–frequency relationship of electrically paced tissues. When compared with isotropic tissues, anisotropic tissues displayed significant differences in [Ca2+]i transients, decreased diastolic baseline [Ca2+]i levels and greater [Ca2+]i influx per cardiac cycle. These results suggest that ECM cues influence tissue structure at cellular and subcellular levels and regulate ECC.


Disease Models & Mechanisms | 2011

Human cardiomyopathy mutations induce myocyte hyperplasia and activate hypertrophic pathways during cardiogenesis in zebrafish

Jason R. Becker; Rahul C. Deo; Andreas A. Werdich; Daniela Panáková; Shannon Coy; Calum A. MacRae

SUMMARY To assess the effects during cardiac development of mutations that cause human cardiomyopathy, we modeled a sarcomeric gene mutation in the embryonic zebrafish. We designed morpholino antisense oligonucleotides targeting the exon 13 splice donor site in the zebrafish cardiac troponin T (tnnt2) gene, in order to precisely recapitulate a human TNNT2 mutation that causes hypertrophic cardiomyopathy (HCM). HCM is a disease characterized by myocardial hypertrophy, myocyte and myofibrillar disarray, as well as an increased risk of sudden death. Similar to humans with HCM, the morphant zebrafish embryos displayed sarcomere disarray and there was a robust induction of myocardial hypertrophic pathways. Microarray analysis uncovered a number of shared transcriptional responses between this zebrafish model and a well-characterized mouse model of HCM. However, in contrast to adult hearts, these embryonic hearts developed cardiomyocyte hyperplasia in response to this genetic perturbation. The re-creation of a human disease-causing TNNT2 splice variant demonstrates that sarcomeric mutations can alter cardiomyocyte biology at the earliest stages of heart development with distinct effects from those observed in adult hearts despite shared transcriptional responses.


Nature Communications | 2015

Chamber identity programs drive early functional partitioning of the heart

Christian Mosimann; Daniela Panáková; Andreas A. Werdich; Gabriel Musso; Alexa Burger; Katy L. Lawson; Logan A. Carr; Kathleen R. Nevis; M. Khaled Sabeh; Yi Zhou; Alan J. Davidson; Anthony DiBiase; Caroline E. Burns; C. Geoffrey Burns; Calum A. MacRae; Leonard I. Zon

The vertebrate heart muscle (myocardium) develops from the first heart field (FHF) and expands by adding second heart field (SHF) cells. While both lineages exist already in teleosts, the primordial contributions of FHF and SHF to heart structure and function remain incompletely understood. Here we delineate the functional contribution of the FHF and SHF to the zebrafish heart using the cis-regulatory elements of the draculin (drl) gene. The drl reporters initially delineate the lateral plate mesoderm, including heart progenitors. Subsequent myocardial drl reporter expression restricts to FHF descendants. We harnessed this unique feature to uncover that loss of tbx5a and pitx2 affect relative FHF versus SHF contributions to the heart. High-resolution physiology reveals distinctive electrical properties of each heart field territory that define a functional boundary within the single zebrafish ventricle. Our data establish that the transcriptional program driving cardiac septation regulates physiologic ventricle partitioning, which successively provides mechanical advantages of sequential contraction.


The FASEB Journal | 2013

Chemical and metabolomic screens identify novel biomarkers and antidotes for cyanide exposure

Anjali K. Nath; Lee D. Roberts; Yan Liu; Sari Mahon; Sonia Kim; Justine H. Ryu; Andreas A. Werdich; James L. Januzzi; Gerry R. Boss; Gary A. Rockwood; Calum A. MacRae; Matthew Brenner; Robert E. Gerszten; Randall T. Peterson

Exposure to cyanide causes a spectrum of cardiac, neurological, and metabolic dysfunctions that can be fatal. Improved cyanide antidotes are needed, but the ideal biological pathways to target are not known. To understand better the metabolic effects of cyanide and to discover novel cyanide antidotes, we developed a zebrafish model of cyanide exposure and scaled it for high‐throughput chemical screening. In a screen of 3120 small molecules, we discovered 4 novel antidotes that block cyanide toxicity. The most potent antidote was riboflavin. Metabolomic profiling of cyanide‐treated zebrafish revealed changes in bile acid and purine metabolism, most notably by an increase in inosine levels. Riboflavin normalizes many of the cyanide‐induced neurological and metabolic perturbations in zebrafish. The metabolic effects of cyanide observed in zebrafish were conserved in a rabbit model of cyanide toxicity. Further, humans treated with nitroprusside, a drug that releases nitric oxide and cyanide ions, display increased circulating bile acids and inosine. In summary, riboflavin may be a novel treatment for cyanide toxicity and prophylactic measure during nitroprusside treatment, inosine may serve as a biomarker of cyanide exposure, and metabolites in the bile acid and purine metabolism pathways may shed light on the pathways critical to reversing cyanide toxicity.—Nath, A. K., Roberts, L. D., Liu, Y., Mahon, S. B., Kim, S., Ryu, J. H., Werdich, A., Januzzi, J. L., Boss, G. R., Rockwood, G. A., MacRae, C. A., Brenner, M., Gerszten, R. E., Peterson, R. T. Chemical and metabolomic screens identify novel biomarkers and antidotes for cyanide exposure. FASEB J. 27, 1928–1938 (2013). www.fasebj.org


American Journal of Physiology-heart and Circulatory Physiology | 2008

Differential effects of phospholamban and Ca2+/calmodulin-dependent kinase II on [Ca2+]i transients in cardiac myocytes at physiological stimulation frequencies

Andreas A. Werdich; Eduardo A. Lima; Igor Dzhura; Madhu V. Singh; Jingdong Li; Mark E. Anderson; Franz J. Baudenbacher

In cardiac myocytes, the activity of the Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) is hypothesized to regulate Ca(2+) release from and Ca(2+) uptake into the sarcoplasmic reticulum via the phosphorylation of the ryanodine receptor 2 and phospholamban (PLN), respectively. We tested the role of CaMKII and PLN on the frequency adaptation of cytosolic Ca(2+) concentration ([Ca(2+)](i)) transients in nearly 500 isolated cardiac myocytes from transgenic mice chronically expressing a specific CaMKII inhibitor, interbred into wild-type or PLN null backgrounds under physiologically relevant pacing conditions (frequencies from 0.2 to 10 Hz and at 37 degrees C). When compared with that of mice lacking PLN only, the combined chronic CaMKII inhibition and PLN ablation decreased the maximum Ca(2+) release rate by more than 50% at 10 Hz. Although PLN ablation increased the rate of Ca(2+) uptake at all frequencies, its combination with CaMKII inhibition did not prevent a frequency-dependent reduction of the amplitude and the duration of the [Ca(2+)](i) transient. High stimulation frequencies in the physiological range diminished the effects of PLN ablation on the decay time constant and on the maximum decay rate of the [Ca(2+)](i) transient, indicating that the PLN-mediated feedback on [Ca(2+)](i) removal is limited by high stimulation frequencies. Taken together, our results suggest that in isolated mouse ventricular cardiac myocytes, the combined chronic CaMKII inhibition and PLN ablation slowed Ca(2+) release at physiological frequencies: the frequency-dependent decay of the amplitude and shortening of the [Ca(2+)](i) transient occurs independent of chronic CaMKII inhibition and PLN ablation, and the PLN-mediated regulation of Ca(2+) uptake is diminished at higher stimulation frequencies within the physiological range.


Disease Models & Mechanisms | 2011

Hadp1, a newly identified pleckstrin homology domain protein, is required for cardiac contractility in zebrafish

Joshua D. Wythe; Michael J. Jurynec; Lisa D. Urness; Christopher A. Jones; M. Khaled Sabeh; Andreas A. Werdich; Mariko Sato; H. Joseph Yost; David Grunwald; Calum A. MacRae; Dean Y. Li

SUMMARY The vertebrate heart is one of the first organs to form, and its early function and morphogenesis are crucial for continued embryonic development. Here we analyze the effects of loss of Heart adaptor protein 1 (Hadp1), which we show is required for normal function and morphogenesis of the embryonic zebrafish heart. Hadp1 is a pleckstrin homology (PH)-domain-containing protein whose expression is enriched in embryonic cardiomyocytes. Knockdown of hadp1 in zebrafish embryos reduced cardiac contractility and altered late myocyte differentiation. By using optical mapping and submaximal levels of hadp1 knockdown, we observed profound effects on Ca2+ handling and on action potential duration in the absence of morphological defects, suggesting that Hadp1 plays a major role in the regulation of intracellular Ca2+ handling in the heart. Hadp1 interacts with phosphatidylinositol 4-phosphate [PI4P; also known as PtdIns(4)P] derivatives via its PH domain, and its subcellular localization is dependent upon this motif. Pharmacological blockade of the synthesis of PI4P derivatives in vivo phenocopied the loss of hadp1 in zebrafish. Collectively, these results demonstrate that hadp1 is required for normal cardiac function and morphogenesis during embryogenesis, and suggest that hadp1 modulates Ca2+ handling in the heart through its interaction with phosphatidylinositols.

Collaboration


Dive into the Andreas A. Werdich's collaboration.

Top Co-Authors

Avatar

Calum A. MacRae

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

M. Khaled Sabeh

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David S. Rosenbaum

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

Eduardo A. Lima

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daniela Panáková

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

Adam W. Feinberg

Carnegie Mellon University

View shared research outputs
Researchain Logo
Decentralizing Knowledge