Andreas Albert
German Aerospace Center
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Andreas Albert.
The EMBO Journal | 2009
Jean-Jacques Favory; Agnieszka Stec; Henriette Gruber; Luca Rizzini; Attila Oravecz; Markus Funk; Andreas Albert; Catherine Cloix; Gareth I. Jenkins; Harald K. Seidlitz; Ferenc Nagy; Roman Ulm
The ultraviolet‐B (UV‐B) portion of the solar radiation functions as an environmental signal for which plants have evolved specific and sensitive UV‐B perception systems. The UV‐B‐specific UV RESPONSE LOCUS 8 (UVR8) and the multifunctional E3 ubiquitin ligase CONSTITUTIVELY PHOTOMORPHOGENIC 1 (COP1) are key regulators of the UV‐B response. We show here that uvr8‐null mutants are deficient in UV‐B‐induced photomorphogenesis and hypersensitive to UV‐B stress, whereas overexpression of UVR8 results in enhanced UV‐B photomorphogenesis, acclimation and tolerance to UV‐B stress. By using sun simulators, we provide evidence at the physiological level that UV‐B acclimation mediated by the UV‐B‐specific photoregulatory pathway is indeed required for survival in sunlight. At the molecular level, we demonstrate that the wild type but not the mutant UVR8 and COP1 proteins directly interact in a UV‐B‐dependent, rapid manner in planta. These data collectively suggest that UV‐B‐specific interaction of COP1 and UVR8 in the nucleus is a very early step in signalling and responsible for the plants coordinated response to UV‐B ensuring UV‐B acclimation and protection in the natural environment.
Proceedings of the National Academy of Sciences of the United States of America | 2010
Henriette Gruber; Marc Heijde; Werner Heller; Andreas Albert; Harald K. Seidlitz; Roman Ulm
Plants respond to low levels of UV-B radiation with a coordinated photomorphogenic response that allows acclimation to this environmental stress factor. The key players in this UV-B response are COP1 (an E3 ubiquitin ligase), UVR8 (a β-propeller protein), and HY5 (a bZIP transcription factor). We have shown previously that an elevated UV-B–specific response is associated with dwarf growth, indicating the importance of balancing UV-B–specific signaling. Negative regulators of this pathway are not known, however. Here, we describe two highly related WD40-repeat proteins, REPRESSOR OF UV-B PHOTOMORPHOGENESIS 1 (RUP1) and RUP2, that interact directly with UVR8 as potent repressors of UV-B signaling. Both genes were transcriptionally activated by UV-B in a COP1-, UVR8-, and HY5-dependent manner. rup1 rup2 double mutants showed an enhanced response to UV-B and elevated UV-B tolerance after acclimation. Overexpression of RUP2 resulted in reduced UV-B–induced photomorphogenesis and impaired acclimation, leading to hypersensitivity to UV-B stress. These results are consistent with an important regulatory role for RUP1 and RUP2, which act downstream of UVR8–COP1 in a negative feedback loop impinging on UVR8 function, balancing UV-B defense measures and plant growth.
Optics Express | 2003
Andreas Albert; C.D. Mobley
Subsurface remote sensing signals, represented by the irradiance re fl ectance and the remote sensing re fl ectance, were investigated. The present study is based on simulations with the radiative transfer program Hydrolight using optical properties of Lake Constance (German: Bodensee) based on in-situ measurements of the water constituents and the bottom characteristics. Analytical equations are derived for the irradiance re fl ectance and remote sensing re fl ectance for deep and shallow water applications. The input of the parameterization are the inherent optical properties of the water - absorption a(lambda) and backscattering bb(lambda). Additionally, the solar zenith angle thetas, the viewing angle thetav , and the surface wind speed u are considered. For shallow water applications the bottom albedo RB and the bottom depth zB are included into the parameterizations. The result is a complete set of analytical equations for the remote sensing signals R and Rrs in deep and shallow waters with an accuracy better than 4%. In addition, parameterizations of apparent optical properties were derived for the upward and downward diffuse attenuation coefficients Ku and Kd.
Oecologia | 2009
Andreas Albert; Vipaporn Sareedenchai; Werner Heller; Harald K. Seidlitz; Christian Zidorn
Plants in alpine habitats are exposed to many environmental stresses, in particular temperature and radiation extremes. Recent field experiments on Arnica montana L. cv. ARBO indicated pronounced altitudinal variation in plant phenolics. Ortho-diphenolics increased with altitude compared to other phenolic compounds, resulting in an increase in antioxidative capacity of the tissues involved. Factors causing these variations were investigated by climate chamber (CC) experiments focusing on temperature and ultraviolet (UV)-B radiation. Plants of A. montana L. cv. ARBO were grown in CCs under realistic climatic and radiation regimes. Key factors temperature and UV-B radiation were altered between different groups of plants. Subsequently, flowering heads were analyzed by HPLC for their contents of flavonoids and caffeic acid derivatives. Surprisingly, increased UV-B radiation did not trigger any change in phenolic metabolites in Arnica. In contrast, a pronounced increase in the ratio of B-ring ortho-diphenolic (quercetin) compared to B-ring monophenolic (kaempferol) flavonols resulted from a decrease in temperature by 5°C in the applied climate regime. In conclusion, enhanced UV-B radiation is probably not the key factor triggering shifts in the phenolic composition in Arnica grown at higher altitudes but rather temperature, which decreases with altitude.
Plant Journal | 2011
Marina A. González Besteiro; Sebastian Bartels; Andreas Albert; Roman Ulm
Plants perceive UV-B radiation as an informational signal by a pathway involving UVR8 as UV-B photoreceptor, activating photomorphogenic and acclimation responses. In contrast, the response to UV-B as an environmental stress involves mitogen-activated protein kinase (MAPK) signalling cascades. Whereas the perception pathway is plant specific, the UV-B stress pathway is more broadly conserved. Knowledge of the UV-B stress-activated MAPK signalling pathway in plants is limited, and its potential interplay with the UVR8-mediated pathway has not been defined. Here, we show that loss of MAP kinase phosphatase 1 in the mutant mkp1 results in hypersensitivity to acute UV-B stress, but without impairing UV-B acclimation. The MKP1-interacting proteins MPK3 and MPK6 are activated by UV-B stress and are hyperactivated in mkp1. Moreover, mutants mpk3 and mpk6 exhibit elevated UV-B tolerance and partially suppress the UV-B hypersensitivity of mkp1. We show further that the MKP1-regulated stress-response MAPK pathway is independent of the UVR8 photoreceptor, but that MKP1 also contributes to survival under simulated sunlight. We conclude that, whereas UVR8-mediated acclimation in plants promotes UV-B-induced defence measures, MKP1-regulated stress signalling results when UV-B protection and repair are insufficient and damage occurs. The combined activity of these two mechanisms is crucial to UV-B tolerance in plants.
New Phytologist | 2014
Ruohe Yin; Kerstin Han; Werner Heller; Andreas Albert; Petre I. Dobrev; Eva Zažímalová; Anton R. Schäffner
Polar auxin transport (PAT) plays key roles in the regulation of plant growth and development. Flavonoids have been implicated in the inhibition of PAT. However, the active flavonoid derivative(s) involved in this process in vivo has not yet been identified. Here, we provide evidence that a specific flavonol bis-glycoside is correlated with shorter plant stature and reduced PAT. Specific flavonoid-biosynthetic or flavonoid-glycosylating steps were genetically blocked in Arabidopsis thaliana. The differential flavonol patterns established were analyzed by high-performance liquid chromatography (HPLC) and related to altered plant stature. PAT was monitored in stem segments using a radioactive [3H]-indole-3-acetic acid tracer. The flavonoid 3-O-glucosyltransferase mutant ugt78d2 exhibited a dwarf stature in addition to its altered flavonol glycoside pattern. This was accompanied by reduced PAT in ugt78d2 shoots. The ugt78d2-dependent growth defects were flavonoid dependent, as they were rescued by genetic blocking of flavonoid biosynthesis. Phenotypic and metabolic analyses of a series of mutants defective at various steps of flavonoid formation narrowed down the potentially active moiety to kaempferol 3-O-rhamnoside-7-O-rhamnoside. Moreover, the level of this compound was negatively correlated with basipetal auxin transport. These results indicate that kaempferol 3-O-rhamnoside-7-O-rhamnoside acts as an endogenous PAT inhibitor in Arabidopsis shoots.
Planta | 2008
Dirk Meißner; Andreas Albert; Christoph Böttcher; Dieter Strack; Carsten Milkowski
Arabidopsis harbors four UDP-glycosyltransferases that convert hydroxycinnamates (HCAs) to 1-O-β-glucose esters, UGT84A1 (encoded by At4g15480), UGT84A2 (At3g21560), UGT84A3 (At4g15490), and UGT84A4 (At4g15500). To elucidate the role of the individual UGT84A enzymes in planta we analyzed gene expression, UGT activities and accumulation of phenylpropanoids in Arabidopsis wild type plants, ugt mutants and overexpressing lines. Individual ugt84A null alleles did not significantly reduce the gross metabolic flux to the accumulating compounds sinapoylcholine (sinapine) in seeds and sinapoylmalate in leaves. For the ugt84A2 mutant, LC/MS analysis revealed minor qualitative and quantitative changes of several HCA choline esters and of disinapoylspermidine in seeds. Overexpression of individual UGT84A genes caused increased enzyme activities but failed to produce significant changes in the pattern of accumulating HCA esters. For UGT84A3, our data tentatively suggest an impact on cell wall-associated 4-coumarate. Exposure of plants to enhanced UV-B radiation induced the UGT84A-encoding genes and led to a transient increase in sinapoylglucose and sinapoylmalate concentrations.
Applied Optics | 2006
Andreas Albert; Peter Gege
What we believe to be a new inversion procedure for multi- and hyperspectral data in shallow water, represented by the subsurface irradiance and remote sensing reflectance spectra, was developed based on analytical equations by using the method of nonlinear curve fitting. The iteration starts using an automatic determination of the initial values of the fit parameters: concentration of phytoplankton and suspended matter, absorption of gelbstoff, bottom depth, and the fractions of up to six bottom types. Initial values of the bottom depth and suspended matter concentration are estimated analytically. Phytoplankton concentration and gelbstoff absorption are initially calculated by the method of nested intervals. A sensitivity analysis was made to estimate the accuracy of the entire inversion procedure including model error, error propagation, and influence of instrument characteristics such as noise, and radiometric and spectral resolution. The entire inversion technique is included in a public-domain software (WASI) to provide a fast and user-friendly tool of forward and inverse modeling.
PLOS Genetics | 2015
Gildas Bourdais; Paweł Burdiak; Adrien Gauthier; Lisette Nitsch; Jarkko Salojärvi; Channabasavangowda Rayapuram; Niina Idänheimo; Kerri Hunter; Sachie Kimura; Ebe Merilo; Aleksia Vaattovaara; Krystyna Oracz; David Kaufholdt; Andres Pallon; Damar Tri Anggoro; Dawid Glów; Jennifer Lowe; Ji Zhou; Omid Mohammadi; Tuomas Puukko; Andreas Albert; Hans Lang; Dieter Ernst; Hannes Kollist; Mikael Brosché; Jörg Durner; Jan Willem Borst; David B. Collinge; Stanislaw Karpinski; Michael F. Lyngkjær
Cysteine-rich receptor-like kinases (CRKs) are transmembrane proteins characterized by the presence of two domains of unknown function 26 (DUF26) in their ectodomain. The CRKs form one of the largest groups of receptor-like protein kinases in plants, but their biological functions have so far remained largely uncharacterized. We conducted a large-scale phenotyping approach of a nearly complete crk T-DNA insertion line collection showing that CRKs control important aspects of plant development and stress adaptation in response to biotic and abiotic stimuli in a non-redundant fashion. In particular, the analysis of reactive oxygen species (ROS)-related stress responses, such as regulation of the stomatal aperture, suggests that CRKs participate in ROS/redox signalling and sensing. CRKs play general and fine-tuning roles in the regulation of stomatal closure induced by microbial and abiotic cues. Despite their great number and high similarity, large-scale phenotyping identified specific functions in diverse processes for many CRKs and indicated that CRK2 and CRK5 play predominant roles in growth regulation and stress adaptation, respectively. As a whole, the CRKs contribute to specificity in ROS signalling. Individual CRKs control distinct responses in an antagonistic fashion suggesting future potential for using CRKs in genetic approaches to improve plant performance and stress tolerance.
The EMBO Journal | 2011
Amandine Radziejwoski; Kobe Vlieghe; Tim Lammens; Barbara Berckmans; Sara Maes; Marcel A. K. Jansen; Claudia Knappe; Andreas Albert; Harald K. Seidlitz; Günther Bahnweg; Dirk Inzé; Lieven De Veylder
Because of their sessile life style, plants have evolved the ability to adjust to environmentally harsh conditions. An important aspect of stress adaptation involves the reprogramming of the cell cycle to ensure optimal growth. The atypical E2F transcription factor DP‐E2F‐like 1 (E2Fe/DEL1) had been found previously to be an important regulator of the endocycle onset. Here, a novel role for E2Fe/DEL1 was identified as a transcriptional repressor of the type‐II cyclobutane pyrimidine dimer‐photolyase DNA repair gene PHR1. Upon ultraviolet‐B (UV‐B) treatment, plants knocked out for E2Fe/DEL1 had improved DNA repair abilities when compared with control plants, whereas those overexpressing it performed less well. Better DNA repair allowed E2Fe/DEL1 knockout plants to resume endoreduplication faster than control plants, contributing in this manner to UV‐B radiation resistance by compensating the stress‐induced reduction in cell number by ploidy‐dependent cell growth. As E2Fe/DEL1 levels decreased upon UV‐B treatment, we hypothesize that the coordinated transcriptional induction of PHR1 with the endoreduplication onset contributes to the adaptation of plants exposed to UV‐B stress.