Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andreas Barthel is active.

Publication


Featured researches published by Andreas Barthel.


Trends in Endocrinology and Metabolism | 2005

FoxO proteins in insulin action and metabolism

Andreas Barthel; Dieter Schmoll; Terry G. Unterman

There is increasing evidence that Forkhead box Other (FoxO) proteins, a subgroup of the Forkhead transcription factor family, have an important role in mediating the effects of insulin and growth factors on diverse physiological functions, including cell proliferation, apoptosis and metabolism. Genetic studies in Caenorhabditis (Caenorhabditis elegans) and Drosophila demonstrate that FoxO proteins are ancient targets of insulin-like signaling involved in the regulation of metabolism and longevity. Studies in mammalian cells reveal that FoxO proteins regulate cell cycle progression and promote resistance to oxidative stress; both in vivo and cell culture studies support the concept that FoxO proteins have an important role in mediating the effects of insulin on metabolism, including its effects on hepatic glucose production. Phosphorylation and acetylation modulate FoxO function and control nuclear-cytoplasmic shuttling, DNA binding and protein-protein interactions. FoxO transcription factors exert positive and negative effects on gene expression, through direct binding to DNA target sites and protein-protein interactions with other transcription factors and coactivators. This paper provides an overview of studies leading to the identification of FoxO proteins as targets of insulin action and the mechanisms mediating the effects of insulin-like signaling on FoxO function, emphasizing the role of FoxO proteins in mediating the effects of insulin on metabolism.


Journal of Biological Chemistry | 1999

Up-regulation of Akt3 in Estrogen Receptor-deficient Breast Cancers and Androgen-independent Prostate Cancer Lines

Kaname Nakatani; Devon A. Thompson; Andreas Barthel; Hiroshi Sakaue; Wei Liu; Ronald J. Weigel; Richard A. Roth

We measured the insulin-stimulated amount of Akt1, Akt2, and Akt3 enzymatic activities in four breast cancer cell lines and three prostate cancer cell lines. In the estrogen receptor-deficient breast cancer cells and the androgen-insensitive prostate cells, the amount of Akt3 enzymatic activity was approximately 20–60-fold higher than in the cells that were estrogen- or androgen-responsive. In contrast, the levels of Akt1 and -2 were not increased in these cells. The increase in Akt3 enzyme activity correlated with an increase in both Akt3 mRNA and protein. In a prostate cancer cell line lacking the tumor suppressor PTEN (a lipid and protein phosphatase), the basal enzymatic activity of Akt3 was constitutively elevated and represented the major active Akt in these cells. Finally, reverse transcription-PCR was used to examine the Akt3 expression in 27 primary breast carcinomas. The expression levels of Akt3 were significantly higher in the estrogen receptor-negative tumors in comparison to the estrogen receptor-positive tumors. To see if the increase in Akt3 could be due to chromosomal abnormalities, the Akt3 gene was assigned to human chromosome 1q44 by fluorescence in situ hybridization and radiation hybrid cell panel analyses. These results indicate that Akt3 may contribute to the more aggressive clinical phenotype of the estrogen receptor-negative breast cancers and androgen-insensitive prostate carcinomas.


Journal of Biological Chemistry | 1999

Regulation of GLUT1 gene transcription by the serine/threonine kinase Akt1.

Andreas Barthel; Steven T. Okino; Jinfang Liao; Kaname Nakatani; Jinping Li; James P. Whitlock; Richard A. Roth

We used mouse hepatoma (Hepa1c1c7) cells to study the role of the serine/threonine kinase Akt in the induction ofGLUT1 gene expression. In order to selectively turn on the Akt kinase cascade, we expressed a hydroxytamoxifen-regulatable form of Akt (myristoylated Akt1 estrogen receptor chimera (MER-Akt1)) in the Hepa1c1c7 cells; we verified that hydroxytamoxifen stimulates MER-Akt1 activity to a similar extent as the activation of endogenous Akt by insulin. Our studies reveal that stimulation of MER-Akt1 by hydroxytamoxifen induces GLUT1 mRNA and protein accumulation to levels comparable to that induced by insulin; therefore, activation of the Akt cascade suffices to induce GLUT1 gene expression in this cell system. Furthermore, expression of a kinase-inactive Akt mutant partially inhibits the response of the GLUT1 gene to insulin. Additional studies reveal that the induction of GLUT1 mRNA by Akt and by insulin reflects increased mRNA synthesis and not decreased mRNA degradation. Our findings imply that theGLUT1 gene responds to insulin at the transcriptional level and that Akt mediates a step in the activation of GLUT1gene expression in this system.


Journal of Biological Chemistry | 1998

Activation of Protein Kinase B/Akt Is Sufficient to Repress the Glucocorticoid and cAMP Induction of Phosphoenolpyruvate Carboxykinase Gene

Jinfang Liao; Andreas Barthel; Kaname Nakatani; Richard A. Roth

A rat hepatoma cell line, H4IIE, was stably transfected with a tamoxifen regulatable Akt-1 construct. Treatment of these cells with tamoxifen caused a rapid stimulation of Akt enzymatic activity that was comparable with the activity observed with the endogenous Akt after insulin stimulation. Prior studies have extensively documented that insulin can repress the glucocorticoid and cAMP-stimulated increase in phosphoenolpyruvate carboxykinase (PEPCK) gene transcription. Activation of this regulatable Akt with tamoxifen was found to mimic the dominant inhibitory effect of insulin on PEPCK gene transcription. Dose response curves to insulin and tamoxifen demonstrated that this response was very sensitive to Akt activation although the maximal response observed with tamoxifen activation was slightly less than that observed with insulin, indicating that the response to insulin may also involve other signaling cascades. The regulation of PEPCK transcription via Akt was, like that previously described for insulin, not dependent upon 70 kDa S6 kinase activity in that it was not inhibited by rapamycin. Finally, the expression of a kinase dead Akt was able to partially inhibit the ability of insulin to stimulate this response. In summary, the present results indicate that activation of Akt alone is sufficient to repress the glucocorticoid and cAMP-stimulated increase in PEPCK gene transcription.


Journal of Biological Chemistry | 2003

Akt Modulates STAT3-mediated Gene Expression through a FKHR (FOXO1a)-dependent Mechanism

Marcin Kortylewski; Florian Feld; Klaus-Dieter Krüger; Gregor Bahrenberg; Richard A. Roth; Hans-Georg Joost; Peter C. Heinrich; Iris Behrmann; Andreas Barthel

The phosphatidylinositol 3-kinase/Akt pathway plays an important role in the signaling of insulin and other growth factors, which reportedly attenuate the interleukin-6 (IL-6)-mediated stimulation of acute phase plasma protein genes. We investigated the effect of the protein kinase Akt on IL-6-mediated transcriptional activation. The transient expression of constitutively active Akt inhibited the IL-6-dependent activity of the α2-macroglobulin promoter in HepG2 cells, whereas expression of an inactive mutant of phosphatidylinositol-dependent kinase 1 had the opposite effect. Since Akt is known to regulate gene expression through inactivation of the transcription factor FKHR (forkhead in rhabdomyosarcoma), we examined the effect of FKHR on STAT3-mediated transcriptional regulation. Indeed, the overexpression of FKHR specifically enhanced the activity of STAT3-dependent promoters but not that of a STAT5-responsive promoter. The effect of FKHR required the presence of functional STAT3 and was abrogated by the expression of dominant negative STAT3 mutants. Furthermore, FKHR and STAT3 were shown to coimmunoprecipitate and to colocalize in the nuclear regions of IL-6-treated HepG2 cells. Our results indicate that FKHR can modulate the IL-6-induced transcriptional activity by acting as a coactivator of STAT3.


Endocrinology | 2002

Regulation of the forkhead transcription factor FKHR (FOXO1a) by glucose starvation and AICAR, an activator of AMP-activated protein kinase.

Andreas Barthel; Dieter Schmoll; Klaus-Dieter Krüger; Richard A. Roth; Hans-Georg Joost

Expression of the catalytic subunit of glucose-6-phosphatase (G6Pase) has recently been shown to be transactivated by the transcription factor FKHR. Insulin and conditions of energy depletion are known repressors of the G6Pase gene. Whereas insulin is known to inhibit G6Pase expression by phosphorylation and nuclear exclusion of FKHR, the mechanism of repression of G6Pase by energy depletion is unknown. Here, we have studied the effect of glucose starvation and AICAR, an activator of AMP-activated protein kinase (AMPK) on G6Pase expression and the expressional level of FKHR-protein in hepatic cells. Using a H4-hepatoma cell line stably overexpressing FKHR, we found that both glucose starvation and treatment of cells with AICAR strongly repressed G6Pase expression and led to an almost complete disappearance of the FKHR protein, whereas the levels of control proteins and FKHR mRNA were not affected. Our data suggest that AICAR and glucose starvation inhibit G6Pase expression by a reduction of the cellular level of FKHR, presumably mediated by specific degradation of the protein.


Biochemical and Biophysical Research Communications | 2003

DYRK1 is a co-activator of FKHR (FOXO1a)-dependent glucose-6-phosphatase gene expression.

Florian von Groote-Bidlingmaier; Dieter Schmoll; Hans-Martin Orth; Hans-Georg Joost; Walter Becker; Andreas Barthel

Expression of glucose-6-phosphatase (G6Pase), one of the rate-limiting enzymes of hepatic gluconeogenesis, has recently been shown to be transactivated by the transcription factor FKHR. One of the proteins known to directly interact with FKHR is the nuclear protein kinase DYRK1A. In order to study the effects of DYRK1A on G6Pase gene expression, we generated a H4IIEC3 rat hepatoma cell line stably expressing DYRK1A by retroviral infection. Overexpression of DYRK1A increased the expression of G6Pase about threefold, as determined by Northern blotting. In transiently transfected HepG2 cells, co-expression of DYRK1A and a G6Pase promoter construct increased G6Pase promoter activity about twofold. This effect of DYRK1A was independent of its kinase activity, since a kinase-dead DYRK1A mutant as well as a point mutant of the phosphorylation site of DYRK1A in FKHR (Ser329Ala) failed to affect the effect of DYRK1A on the G6Pase expression. The effect of DYRK on the G6Pase promoter activity was produced by the isoforms DYRK1A and DYRK1B, which are localized in the nucleus, but not by DYRK2. Mutations of the FKHR-binding sites in the G6Pase promoter markedly reduced the effect of DYRK1 on the G6Pase promoter activity. In summary, the data suggest that DYRK1 is a specific co-activator of FKHR, independent of its kinase activity.


Biochemical Journal | 2003

Alternative splicing variants of dual specificity tyrosine phosphorylated and regulated kinase 1B exhibit distinct patterns of expression and functional properties

Susanne Leder; Hanna Czajkowska; Barbara Maenz; Katrin de Graaf; Andreas Barthel; Hans-Georg Joost; Walter Becker

The dual specificity tyrosine phosphorylated and regulated kinase (DYRK) family of protein kinases is a group of evolutionarily conserved protein kinases that have been characterized as regulators of growth and development in mammals, Drosophila and lower eukaryotes. In the present study, we have characterized three splicing variants of DYRK1B (DYRK1B-p65, DYRK1B-p69 and DYRK1B-p75) with different expression patterns and enzymic activities. DYRK1B-p65 and DYRK1B-p69 exhibited similar, but not identical, patterns of expression in mouse tissues, with the highest protein levels found in the spleen, lung, brain, bladder, stomach and testis. In contrast, DYRK1B-p75 was detected specifically in skeletal muscles, in the neuronal cell line GT1-7 and also in differentiated, adipocyte-like 3T3-L1 cells, but not in undifferentiated 3T3-L1 preadipocytes. A comparison of the mouse and human Dyrk1b genomic and cDNA sequences defined the alternative splicing events that produce the variants of DYRK1B. In DYRK1B-p75, transcription starts with exon 1B instead of exon 1A, generating a new translation start, which extends the open reading frame by 60 codons. This gene structure suggests that alternative promoters direct the expression of DYRK1B-p69 and DYRK1B-p75. Both splicing variants exhibited kinase activity in vitro and contained phosphotyrosine when expressed in COS-7 cells. Owing to differential recognition of the 3-splice site in exon 9, DYRK1B-p65 differs from DYRK1B-p69 by the absence of 40 amino acids within the catalytic domain. DYRK1B-p65 lacked kinase activity in vitro and did not contain phosphotyrosine. DYRK1B-p69 and DYRK1B-p75 stimulated reporter gene activity driven by the f or kh ead in r habdosarcoma (FKHR)-dependent glucose-6-phosphatase promoter more strongly when compared with DYRK1B-p65, indicating that the DYRK1B splicing variants exhibit functional differences.


Endocrinology | 1997

A constitutively active version of the Ser/Thr kinase Akt induces production of the ob gene product, leptin, in 3T3-L1 adipocytes.

Andreas Barthel; Aimee D. Kohn; Yanan Luo; Richard A. Roth

The expression of the ob gene product leptin in adipose tissues has been previously described to be regulated by insulin in vivo and vitro. Akt, a ser/thr kinase with a pleckstrin homology domain, has recently been identified to function in the insulin receptor signaling cascade. The aim of this study was to investigate the role of Akt in the production of leptin by adipocytes. Therefore, we examined leptin production by 3T3-L1 adipocytes stably expressing a myristoylated version of Akt which is constitutively active. Leptin levels in the supernatants of serum starved, nonstimulated 3T3-L1 adipocytes were determined by radioimmunoassay (RIA). Expression of the constitutively active Akt was found to induce a more than 20-fold increase in leptin levels whereas a control non-myristoylated Akt had no effect. Leptin mRNA levels as determined by either RNase protection assay or reverse transcriptase (RT)-polymerase chain reaction (PCR) were not elevated by the constitutively active Akt. These results indicate t...


European Journal of Cell Biology | 2000

Glucose deprivation induces Akt-dependent synthesis and incorporation of GLUT1, but not of GLUT4, into the plasma membrane of 3T3-L1adipocytes

Sonja von der Crone; Christine Deppe; Andreas Barthel; Shlomo Sasson; Hans-Georg Joost; Annette Schürmann

Reduction of the glucose concentration in the culture medium of 3T3-L1 adipose cells below 1.25 mM produces a 4-8-fold stimulation of 2-deoxyglucose uptake which starts after a lag phase of 2 h and is maximal after 10-16 h. In the present study, we employed the membrane sheet assay in order to re-assess the contribution of the transporter isoforms GLUT1 and GLUT4 to this effect. Immunochemical assay of glucose transporters in membranes prepared with the sheet assay revealed that the effect reflected a marked increase of GLUT1 in the plasma membrane with no effect on GLUT4. Glucose deprivation increased the total cellular GLUT1 protein in parallel with the transport activity, whereas GLUT4 was unaltered. The specific PI 3-kinase inhibitor wortmannin inhibited the effect of glucose deprivation on transport activity and also on GLUT1 synthesis. Glucose deprivation produced a moderate, biphasic increase in the activity of the protein kinase Akt/PKB that was inhibitable by wortmannin. When wortmannin was added after stimulation of cells in order to assess the internalization rate of transporters, the effect of insulin was reversed considerably faster (T1/2 = 18 min) than that of glucose deprivation (T1/2 > 60 min). These data are consistent with the conclusion that the effect of glucose deprivation reflects a specific, Akt-dependent de-novo synthesis of GLUT1, and not of GLUT4, and its insertion into a plasma membrane compartment which is distinct from that of the insulin-sensitive GLUT1.

Collaboration


Dive into the Andreas Barthel's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Walter Becker

University of Luxembourg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge