Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andreas Batzer is active.

Publication


Featured researches published by Andreas Batzer.


Cell | 1992

The SH2 and SH3 domain-containing protein GRB2 links receptor tyrosine kinases to ras signaling

E.J. Lowenstein; Roger J. Daly; Andreas Batzer; W Li; B. Margolis; Reiner Lammers; Axel Ullrich; Edward Y. Skolnik; Dafna Bar-Sagi; Joseph Schlessinger

A cDNA clone encoding a novel, widely expressed protein (called growth factor receptor-bound protein 2 or GRB2) containing one src homology 2 (SH2) domain and two SH3 domains was isolated. Immunoblotting experiments indicate that GRB2 associates with tyrosine-phosphorylated epidermal growth factor receptors (EGFRs) and platelet-derived growth factor receptors (PDGFRs) via its SH2 domain. Interestingly, GRB2 exhibits striking structural and functional homology to the C. elegans protein sem-5. It has been shown that sem-5 and two other genes called let-23 (EGFR like) and let-60 (ras like) lie along the same signal transduction pathway controlling C. elegans vulval induction. To examine whether GRB2 is also a component of ras signaling in mammalian cells, microinjection studies were performed. While injection of GRB2 or H-ras proteins alone into quiescent rat fibroblasts did not have mitogenic effect, microinjection of GRB2 together with H-ras protein stimulated DNA synthesis. These results suggest that GRB2/sem-5 plays a crucial role in a highly conserved mechanism for growth factor control of ras signaling.


Cell | 1993

BCR-ABL-induced oncogenesis is mediated by direct interaction with the SH2 domain of the GRB-2 adaptor protein

Ann Marie Pendergast; Lawrence A. Quilliam; Larry D. Cripe; Craig H. Bassing; Zonghan Dai; Nanxin Li; Andreas Batzer; Kelly M. Rabun; Channing J. Der; Joseph Schlessinger; Mikhail L. Gishizky

BCR-ABL is a chimeric oncoprotein that exhibits deregulated tyrosine kinase activity and is implicated in the pathogenesis of Philadelphia chromosome (Ph1)-positive human leukemias. Sequences within the first exon of BCR are required to activate the transforming potential of BCR-ABL. The SH2/SH3 domain-containing GRB-2 protein links tyrosine kinases to Ras signaling. We demonstrate that BCR-ABL exists in a complex with GRB-2 in vivo. Binding of GRB-2 to BCR-ABL is mediated by the direct interaction of the GRB-2 SH2 domain with a phosphorylated tyrosine, Y177, within the BCR first exon. The BCR-ABL-GRB-2 interaction is required for activation of the Ras signaling pathway. Mutation of Y177 to phenylalanine (Y177F) abolishes GRB-2 binding and abrogates BCR-ABL-induced Ras activation. The BCR-ABL (Y177F) mutant is unable to transform primary bone marrow cultures and is impaired in its ability to transform Rat1 fibroblasts. These findings implicate activation of Ras function as an important component in BCR-ABL-mediated transformation and demonstrate that GRB-2 not only functions in normal development and mitogenesis but also plays a role in oncogenesis.


The EMBO Journal | 1993

The SH2/SH3 domain-containing protein GRB2 interacts with tyrosine-phosphorylated IRS1 and Shc: implications for insulin control of ras signalling.

Edward Y. Skolnik; Lee Ch; Andreas Batzer; Vicentini Lm; Mo Zhou; Roger J. Daly; Myers Mj; Jonathan M. Backer; Axel Ullrich; Morris F. White

GRB2, a small protein comprising one SH2 domain and two SH3 domains, represents the human homologue of the Caenorhabditis elegans protein, sem‐5. Both GRB2 and sem‐5 have been implicated in a highly conserved mechanism that regulates p21ras signalling by receptor tyrosine kinases. In this report we show that in response to insulin, GRB2 forms a stable complex with two tyrosine‐phosphorylated proteins. One protein is the major insulin receptor substrate IRS‐1 and the second is the SH2 domain‐containing oncogenic protein, Shc. The interactions between GRB2 and these two proteins require ligand activation of the insulin receptor and are mediated by the binding of the SH2 domain of GRB2 to phosphotyrosines on both IRS‐1 and Shc. Although GRB2 associates with IRS‐1 and Shc, it is not tyrosine‐phosphorylated after insulin stimulation, implying that GRB2 is not a substrate for the insulin receptor. Furthermore, we have identified a short sequence motif (YV/IN) present in IRS‐1, EGFR and Shc, which specifically binds the SH2 domain of GRB2 with high affinity. Interestingly, both GRB2 and phosphatidylinositol‐3 (PI‐3) kinase can simultaneously bind distinct tyrosine phosphorylated regions on the same IRS‐1 molecule, suggesting a mechanism whereby IRS‐1 could provide the core for a large signalling complex. We propose a model whereby insulin stimulation leads to formation of multiple protein‐‐protein interactions between GRB2 and the two targets IRS‐1 and Shc. These interactions may play a crucial role in activation of p21ras and the control of downstream effector molecules.


Molecular and Cellular Biology | 1994

A new function for a phosphotyrosine phosphatase: linking GRB2-Sos to a receptor tyrosine kinase.

Wei Li; R. Nishimura; A. Kashishian; Andreas Batzer; W. J. H. Kim; J. A. Cooper; Joseph Schlessinger

Autophosphorylated growth factor receptors provide binding sites for the src homology 2 domains of intracellular signaling molecules. In response to epidermal growth factor (EGF), the activated EGF receptor binds to a complex containing the signaling protein GRB2 and the Ras guanine nucleotide-releasing factor Sos, leading to activation of the Ras signaling pathway. We have investigated whether the platelet-derived growth factor (PDGF) receptor binds GRB2-Sos. In contrast with the EGF receptor, the GRB2 does not bind to the PDGF receptor directly. Instead, PDGF stimulation induces the formation of a complex containing GRB2; 70-, 80-, and 110-kDa tyrosine-phosphorylated proteins; and the PDGF receptor. Moreover, GRB2 binds directly to the 70-kDa protein but not to the PDGF receptor. Using a panel of PDGF beta-receptor mutants with altered tyrosine phosphorylation sites, we identified Tyr-1009 in the PDGF receptor as required for GRB2 binding. Binding is inhibited by a phosphopeptide containing a YXNX motif. The protein tyrosine phosphatase Syp/PTP1D/SHPTP2/PTP2C is approximately 70 kDa, binds to the PDGF receptor via Tyr-1009, and contains several YXNX sequences. We found that the 70-kDa protein that binds to the PDGF receptor and to GRB2 comigrates with Syp and is recognized by anti-Syp antibodies. Furthermore, both GRB2 and Sos coimmunoprecipitate with Syp from lysates of PDGF-stimulated cells, and GRB2 binds directly to tyrosine-phosphorylated Syp in vitro. These results indicate that GRB2 interacts with different growth factor receptors by different mechanisms and the cytoplasmic phosphotyrosine phosphatase Syp acts as an adapter between the PDGF receptor and the GRB2-Sos complex.


Molecular and Cellular Biology | 1994

Hierarchy of binding sites for Grb2 and Shc on the epidermal growth factor receptor.

Andreas Batzer; D Rotin; J Ureña; Edward Y. Skolnik; Joseph Schlessinger

We analyzed the binding site(s) for Grb2 on the epidermal growth factor (EGF) receptor (EGFR), using cell lines overexpressing EGFRs containing various point and deletion mutations in the carboxy-terminal tail. Results of co-immunoprecipitation experiments suggest that phosphotyrosines Y-1068 and Y-1173 mediate the binding of Grb2 to the EGFR. Competition experiments with synthetic phosphopeptides corresponding to known autophosphorylation sites on the EGFR demonstrated that phosphopeptides containing Y-1068, and to a lesser extent Y-1086, were able to inhibit the binding of Grb2 to the EGFR, while a Y-1173 peptide did not. These findings were confirmed by using a dephosphorylation protection assay and by measuring the dissociation constants of Grb2s SH2 domain to tyrosine-phosphorylated peptides, using real-time biospecific interaction analysis (BIAcore). From these studies, we concluded that Grb2 binds directly to the EGFR at Y-1068, to a lesser extent at Y-1086, and indirectly at Y-1173. Since Grb2 also binds Shc after EGF stimulation, we investigated whether Y-1173 is a binding site for the SH2 domain of Shc on the EGFR. Both competition experiments with synthetic phosphopeptides and dephosphorylation protection analysis demonstrated that Y-1173 and Y-992 are major and minor binding sites, respectively, for Shc on the EGFR. However, other phosphorylation sites in the carboxy-terminal tail of the EGFR are able to compensate for the loss of the main binding sites for Shc. These analyses reveal a hierarchy of interactions between Grb2 and Shc with the EGFR and indicate that Grb2 can bind the tyrosine-phosphorylated EGFR directly, as well as indirectly via Shc.


Cell | 1993

SH3 domains direct cellular localization of signaling molecules

Dafna Bar-Sagi; D Rotin; Andreas Batzer; Valsan Mandiyan; Joseph Schlessinger

In this study we describe the cellular distribution of the SH2 and SH3 domains of phospholipase C-gamma (PLC-gamma) and of the adaptor protein GRB2 following their microinjection into living rat embryo fibroblasts. Using immunofluorescence microscopy, we show that a truncated protein composed of the SH2 and SH3 domains of PLC-gamma was localized to the actin cytoskeleton. A similar localization pattern was observed when only the SH3 domain of PLC-gamma was microinjected. In contrast, a truncated protein composed of only the SH2 domains of PLC-gamma exhibited diffuse cytoplasmic distribution. Microinjected GRB2 protein was localized primarily to membrane ruffles, as was GRB2 protein containing SH2 loss-of-function point mutations. Hence, the localization of GRB2 to membrane ruffles does not require interaction with tyrosine-phosphorylated moieties. However, GRB2 proteins with SH3 loss-of-function point mutations exhibited diffuse cytoplasmic distribution. These results indicate that SH3 domains are responsible for the targeting of signaling molecules to specific subcellular locations.


Molecular and Cellular Biology | 1995

The phosphotyrosine interaction domain of Shc binds an LXNPXY motif on the epidermal growth factor receptor.

Andreas Batzer; P Blaikie; K Nelson; Joseph Schlessinger; B. Margolis

Shc is an SH2 domain protein that is tyrosine phosphorylated in cells stimulated with a variety of growth factors and cytokines. Once phosphorylated, Shc binds the Grb2-Sos complex, leading to Ras activation. Shc can interact with tyrosine-phosphorylated proteins by binding to phosphotyrosine in the context of an NPXpY motif, where pY is a phosphotyrosine. This is an unusual binding site for an SH2 domain protein whose binding specificity is usually controlled by residues carboxy terminal, not amino terminal, to the phosphotyrosine. Recently we identified a second region in Shc, named the phosphotyrosine interaction (PI) domain, and we have found it to be present in a variety of other cellular proteins. In this study we used a dephosphorylation protection assay, competition analysis with phosphotyrosine-containing synthetic peptides, and epidermal growth factor receptor (EGFR) mutants to determine the binding sites of the PI domain of Shc on the EGFR. We demonstrate that the PI domain of Shc binds the LXNPXpY motif that encompasses Y-1148 of the activated EGFR. We conclude that the PI domain imparts to Shc its ability to bind the NPXpY motif.


Molecular and Cellular Biology | 1995

Association between GRB2/Sos and insulin receptor substrate 1 is not sufficient for activation of extracellular signal-regulated kinases by interleukin-4: implications for Ras activation by insulin.

W Pruett; Yaping Yuan; E Rose; Andreas Batzer; N Harada; Edward Y. Skolnik

Insulin receptor substrate 1 (IRS-1) mediates the activation of a variety of signaling pathways by the insulin and insulin-like growth factor 1 receptors by serving as a docking protein for signaling molecules with SH2 domains. We and others have shown that in response to insulin stimulation IRS-1 binds GRB2/Sos and have proposed that this interaction is important in mediating Ras activation by the insulin receptor. Recently, it has been shown that the interleukin (IL)-4 receptor also phosphorylates IRS-1 and an IRS-1-related molecule, 4PS. Unlike insulin, however, IL-4 fails to activate Ras, extracellular signal-regulated kinases (ERKs), or mitogen-activated protein kinases. We have reconstituted the IL-4 receptor into an insulin-responsive L6 myoblast cell line and have shown that IRS-1 is tyrosine phosphorylated to similar degrees in response to insulin and IL-4 stimulation in this cell line. In agreement with previous findings, IL-4 failed to activate the ERKs in this cell line or to stimulate DNA synthesis, whereas the same responses were activated by insulin. Surprisingly, IL-4s failure to activate ERKs was not due to a failure to stimulate the association of tyrosine-phosphorylated IRS-1 with GRB2/Sos; the amounts of GRB2/Sos associated with IRS-1 were similar in insulin- and IL-4-stimulated cells. Moreover, the amounts of phosphatidylinositol 3-kinase activity associated with IRS-1 were similar in insulin- and IL-4-stimulated cells. In contrast to insulin, however, IL-4 failed to induce tyrosine phosphorylation of Shc or association of Shc with GRB2. Thus, ERK activation correlates with Shc tyrosine phosphorylation and formation of an Shc/GRB2 complex. Thus, ERK activation correlates with Shc tyrosine phosphorylation and formation of an Shc/GRB2 complex. Previous studies have indicated that activation of ERks in this cell line is dependent upon Ras since a dominant-negative Ras (Asn-17) blocks ERK activation by insulin. Our findings, taken in the context of previous work, suggest that binding of GRB2/Sos to Shc may be the predominant mechanism whereby insulin as well as cytokine receptors activate Ras.


Journal of Biological Chemistry | 2008

Biophysical Characterization of the Interaction between Hepatic Glucokinase and Its Regulatory Protein IMPACT OF PHYSIOLOGICAL AND PHARMACOLOGICAL EFFECTORS

Oliver Anderka; Janina Boyken; Ursula Aschenbach; Andreas Batzer; Oliver Boscheinen; Dieter Schmoll

Glucokinase (GK) is a key enzyme of glucose metabolism in liver and pancreatic β-cells, and small molecule activators of GK (GKAs) are under evaluation for the treatment of type 2 diabetes. In liver, GK activity is controlled by the GK regulatory protein (GKRP), which forms an inhibitory complex with the enzyme. Here, we performed isothermal titration calorimetry and surface plasmon resonance experiments to characterize GK-GKRP binding and to study the influence that physiological and pharmacological effectors of GK have on the protein-protein interaction. In the presence of fructose-6-phosphate, GK-GKRP complex formation displayed a strong entropic driving force opposed by a large positive enthalpy; a negative change in heat capacity was observed (Kd = 45 nm, ΔH = 15.6 kcal/mol, TΔS = 25.7 kcal/mol, ΔCp = –354 cal mol–1 K–1). With koff = 1.3 × 10–2 s–1, the complex dissociated quickly. The thermodynamic profile suggested a largely hydrophobic interaction. In addition, effects of pH and buffer demonstrated the coupled uptake of one proton and indicated an ionic contribution to binding. Glucose decreased the binding affinity between GK and GKRP. This decrease was potentiated by an ATP analogue. Prototypical GKAs of the amino-heteroaryl-amide type bound to GK in a glucose-dependent manner and impaired the association of GK with GKRP. This mechanism might contribute to the antidiabetic effects of GKAs.


Oncogene | 1999

Evidence for SH3 domain directed binding and phosphorylation of Sam68 by Src.

Zhiwei Shen; Andreas Batzer; Jackie A. Koehler; Paul Polakis; Joseph Schlessinger; Nicholas B Lydon; Michael F. Moran

Sam68 is a 68 kDa protein that associates with and is phosphorylated by the c-Src kinase at mitosis. It contains a KH domain implicated in RNA binding and several proline-rich motifs that resemble known SH3 binding sites. The SH3 domains of c-Src, phosphatidylinositol 3-OH kinase, phospholipase C-γ and Grb2 protein (containing two SH3 domains), but not other SH3 domains tested, were capable of binding Sam68 in vitro. Synthetic peptides corresponding to the proline motifs of Sam68 inhibited with different efficiencies the binding of SH3 domains to Sam68 suggesting that the proline motifs of Sam68 function as specific SH3 domain binding sites. Mutation of Sam68 SH3 binding sites further indicated that the SRC SH3 domain mediates binding of Src to unphosphorylated Sam68. Phosphorylation of Sam68 by Src kinase was inhibited when the Src SH3 binding site of Sam68 was mutated or when corresponding peptides were added to in vitro kinase reactions indicating that binding of the Src SH3 domain to a specific site near the amino-terminus of Sam68 (including residues 38 – 45: PPLPHRSR) facilitates phosphorylation of Sam68 by the Src kinase domain. Sam68-based proline peptides had no effect on the phosphorylation of another in vitro substrate of Src, enolase. These results suggest that Src effectively mounts Sam68 through its SH3 domain, possibly as a mechanism to position the kinase domain close to substrate tyrosine residues in the carboxyl-half of the protein.

Collaboration


Dive into the Andreas Batzer's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lee Ch

New York University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge