Andreas Bauman
University of Basel
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Andreas Bauman.
Dalton Transactions | 2011
Rory L. Arrowsmith; Philip A. Waghorn; Michael W. Jones; Andreas Bauman; Simon K. Brayshaw; Zhiyuan Hu; Gabriele Kociok-Köhn; Thomas L. Mindt; Rex M. Tyrrell; Stanley W. Botchway; Jonathan R. Dilworth; Sofia I. Pascu
New fluorescent and biocompatible aromatic Ga(III)- and In(III)-bis(thiosemicarbazonato) complexes for dual mode optical and PET or SPECT molecular imaging have been synthesised via a synthetic method based on transmetallation reactions from Zn(II) precursors. Complexes have been fully characterised in the solid state by single crystal X-ray diffraction and in solution by spectroscopic methods (UV/Vis, fluorescence, (1)H and (13)C{(1)H} NMR). The bis(thiosemicarbazones) radiolabelled rapidly in high yields under mild conditions with (111)In (a gamma and Auger emitter for SPECT imaging and radiotherapy with t(1/2) = 2.8 d) and (68)Ga (a generator-available positron emitter for PET imaging with t(1/2) = 68 min). Cytotoxicity and biolocalisation studies using confocal fluorescence imaging and fluorescence lifetime imaging (FLIM) techniques have been used to study their in vitro activities and stabilities in HeLa and PC-3 cells to ascertain their suitability as synthetic scaffolds for future multimodality molecular imaging in cancer diagnosis and therapy. The observation that the indium complexes show certain nuclear uptake could be of relevance towards developing (111)In therapeutic agents based on Auger electron emission to induce DNA damage.
The Journal of Nuclear Medicine | 2017
Guillaume Nicolas; Seval Beykan; Hakim Bouterfa; Jens Kaufmann; Andreas Bauman; Michael Lassmann; Jean Claude Reubi; Jean Rivier; Helmut R. Maecke; Melpomeni Fani; Damian Wild
Preclinical and preliminary clinical evidence indicates that radiolabeled somatostatin (sst) receptor antagonists perform better than agonists in detecting neuroendocrine tumors (NETs). We performed a prospective phase I/II study to evaluate the sst receptor antagonist 68Ga-OPS202 (68Ga-NODAGA-JR11; NODAGA = 1,4,7-triazacyclononane,1-glutaric acid-4,7-acetic acid and JR11 = Cpa-c(dCys-Aph(Hor)-dAph(Cbm)-Lys-Thr-Cys)-dTyr-NH2)) for PET imaging. Here, we report the results of phase I of the study. Methods: Patients received 2 single 150-MBq intravenous injections of 68Ga-OPS202 3–4 wk apart (15 μg of peptide at visit 1 and 50 μg at visit 2). At visit 1, a dynamic PET/CT scan over the kidney was obtained during the first 30 min after injection, and static whole-body scans were obtained at 0.5, 1, 2, and 4 h after injection; at visit 2, a static whole-body scan was obtained at 1 h. Blood samples and urine were collected at regular intervals to determine 68Ga-OPS202 pharmacokinetics. Safety, biodistribution, radiation dosimetry, and the most appropriate imaging time point for 68Ga-OPS202 were assessed. Results: Twelve patients with well-differentiated gastroenteropancreatic (GEP) NETs took part in the study. 68Ga-OPS202 cleared rapidly from the blood, with a mean residence time of 2.4 ± 1.1 min/L. The organs with the highest mean dose coefficients were the urinary bladder wall, kidneys, and spleen. The calculated effective dose was 2.4E−02 ± 0.2E−02 mSv/MBq, corresponding to 3.6 mSv, for a reference activity of 150 MBq. Based on total numbers of detected malignant lesions, the optimal time window for the scan was between 1 and 2 h. For malignant liver lesions, the time point at which most patients had the highest mean tumor contrast was 1 h. 68Ga-OPS202 was well tolerated; adverse events were grade 1 or 2, and there were no signals of concern from laboratory blood or urinalysis tests. Conclusion: 68Ga-OPS202 showed favorable biodistribution and imaging properties, with optimal tumor contrast between 1 and 2 h after injection. Dosimetry analysis revealed that the dose delivered by 68Ga-OPS202 to organs is similar to that delivered by other 68Ga-labeled sst analogs. Further evaluation of 68Ga-OPS202 for PET/CT imaging of NETs is therefore warranted.
The Journal of Nuclear Medicine | 2015
Andreas Bauman; Ibai E. Valverde; Christiane A. Fischer; Sandra Vomstein; Thomas L. Mindt
Clinical studies have demonstrated the potential of radiometallated exendin-4 derivatives for the imaging of glucagonlike peptide-1 receptor–overexpressing insulinomas. Recently investigated exendin-4 derivatives were radiolabeled with the SPECT isotopes 99mTc or 111In. Despite promising results, the low spatial resolution associated with SPECT and the occasional need to perform imaging several days after injection for the demarcation of insulinomas from the kidneys represent current limitations. The aim of this work was the development of exendin-4 derivatives for the imaging of insulinomas by high-resolution PET at early or late time points after injection of the radiotracer. Methods: An exendin-4 derivative conjugated to desferrioxamine (DFO) was used for radiolabeling with the PET isotopes 68Ga and 89Zr. Both radiotracers were evaluated in vitro with RIN-m5F cells for their cell internalization properties as well as affinities and specificities toward the glucagonlike peptide-1 receptor. Serum stabilities of the radiopeptides were assessed in blood serum, and their distribution coefficient was determined by the shake-flask method. Biodistribution experiments were performed with nude mice bearing RIN-m5F xenografts. For all experiments, clinically evaluated [Lys40-(AHX-DTPA-111In)NH2]exendin-4 was used as a reference compound. Results: [Lys40-(AHX-DFO)NH2]exendin-4 was labeled with 89Zr and 68Ga in high radiochemical yield and purity. In vitro experiments showed favorable cell uptake and receptor affinity for [Lys40-(AHX-DFO-68Ga)NH2]exendin-4, and [Lys40-(AHX-DFO-89Zr)NH2]exendin-4 and [Lys40-(AHX-DTPA-111In)NH2]exendin-4 performed similarly well. In biodistribution experiments, [Lys40-(AHX-DFO-68Ga)NH2]exendin-4 exhibited a significantly enhanced tumor uptake 1 h after injection in comparison to the other 2 radiotracers. Tumor uptake of [Lys40-(AHX-DFO-89Zr)NH2]exendin-4 was comparable to that of [Lys40-(AHX-DTPA-111In)NH2]exendin-4 at 1–48 h after injection. All compounds showed a fast blood clearance and low accumulation in receptor-negative organs and tissue with the exception of the kidneys, a known characteristic for exendin-4–based radiotracers. Conclusion: 68Ga- and 89Zr-radiolabeled [Lys40-(AHX-DFO)NH2]exendin-4 exhibit characteristics comparable or superior to the clinically tested reference compound [Lys40-(AHX-DTPA-111In)NH2]exendin-4 and, thus, represent potential new tracers for the imaging of insulinomas by PET.
Angewandte Chemie | 2013
Ibai E. Valverde; Andreas Bauman; Christiane A. Kluba; Sandra Vomstein; Martin A. Walter; Thomas L. Mindt
Chemical Communications | 2014
Malay Patra; Andreas Bauman; Cristina Mari; Christiane A. Fischer; Olivier Blacque; Daniel Häussinger; Gilles Gasser; Thomas L. Mindt
Angewandte Chemie | 2013
Ibai E. Valverde; Andreas Bauman; Christiane A. Kluba; Sandra Vomstein; Martin A. Walter; Thomas L. Mindt
Organic and Biomolecular Chemistry | 2012
Christiane A. Kluba; Andreas Bauman; Ibai E. Valverde; Sandra Vomstein; Thomas L. Mindt
Cancer Biotherapy and Radiopharmaceuticals | 2014
Dominik Cordier; Alexandra Gerber; Christiane A. Kluba; Andreas Bauman; Gregor Hutter; Thomas L. Mindt; Luigi Mariani
Archive | 2015
Andreas Bauman; Ibai E. Valverde; Christiane A. Fischer; Sandra Vomstein; Thomas L. Mindt
Nuclear Medicine and Biology | 2014
Malay Patra; Andreas Bauman; Christiane A. Fischer; Cristiane Mari; Gilles Gasser; Thomas L. Mindt