Andreas Bergthaler
Austrian Academy of Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Andreas Bergthaler.
Journal of Clinical Investigation | 2006
Karl S. Lang; Panco Georgiev; Mike Recher; Alexander A. Navarini; Andreas Bergthaler; Mathias Heikenwalder; Nicola L. Harris; Tobias Junt; Bernhard Odermatt; Pierre-Alain Clavien; Hanspeter Pircher; Shizuo Akira; Hans Hengartner; Rolf M. Zinkernagel
The liver is known to be a classical immunoprivileged site with a relatively high resistance against immune responses. Here we demonstrate that highly activated liver-specific effector CD8+ T cells alone were not sufficient to trigger immune destruction of the liver in mice. Only additional innate immune signals orchestrated by TLR3 provoked liver damage. While TLR3 activation did not directly alter liver-specific CD8+ T cell function, it induced IFN-alpha and TNF-alpha release. These cytokines generated expression of the chemokine CXCL9 in the liver, thereby enhancing CD8+ T cell infiltration and liver disease in mice. Thus, nonspecific activation of innate immunity can drastically enhance susceptibility to immune destruction of a solid organ.
Proceedings of the National Academy of Sciences of the United States of America | 2006
Alexander A. Navarini; Mike Recher; Karl S. Lang; Panco Georgiev; Susanne Meury; Andreas Bergthaler; Lukas Flatz; Jacques Bille; Regine Landmann; Bernhard Odermatt; Hans Hengartner; Rolf M. Zinkernagel
The reason why severe localized or systemic virus infections enhance and aggravate bacterial superinfection is poorly understood. Here we show that virus-induced IFN type I caused apoptosis in bone marrow granulocytes, drastically reduced granulocyte infiltrates at the site of bacterial superinfection, caused up to 1,000-fold higher bacterial titers in solid organs, and increased disease susceptibility. The finding that the innate antiviral immune response reduces the antibacterial granulocyte defense offers an explanation for enhanced susceptibility to bacterial superinfection during viral disease.
Nature | 2012
Vladimir Litvak; Alexander V. Ratushny; Aaron E. Lampano; Frank Schmitz; Albert C. Huang; Ayush Raman; Alistair G. Rust; Andreas Bergthaler; John D. Aitchison; Alan Aderem
Antiviral responses must be tightly regulated to defend rapidly against infection while minimizing inflammatory damage. Type 1 interferons (IFN-I) are crucial mediators of antiviral responses and their transcription is regulated by a variety of transcription factors; principal among these is the family of interferon regulatory factors (IRFs). The IRF gene regulatory networks are complex and contain multiple feedback loops. The tools of systems biology are well suited to elucidate the complex interactions that give rise to precise coordination of the interferon response. Here we have used an unbiased systems approach to predict that a member of the forkhead family of transcription factors, FOXO3, is a negative regulator of a subset of antiviral genes. This prediction was validated using macrophages isolated from Foxo3-null mice. Genome-wide location analysis combined with gene deletion studies identified the Irf7 gene as a critical target of FOXO3. FOXO3 was identified as a negative regulator of Irf7 transcription and we have further demonstrated that FOXO3, IRF7 and IFN-I form a coherent feed-forward regulatory circuit. Our data suggest that the FOXO3–IRF7 regulatory circuit represents a novel mechanism for establishing the requisite set points in the interferon pathway that balances the beneficial effects and deleterious sequelae of the antiviral response.
Nature Medicine | 2010
Lukas Flatz; Ahmed N. Hegazy; Andreas Bergthaler; Admar Verschoor; Christina Claus; Marylise Fernandez; Luca Gattinoni; Susan Johnson; Florian Kreppel; Stefan Kochanek; Maries van den Broek; Andreas Radbruch; Frédéric Lévy; Paul-Henri Lambert; Claire-Anne Siegrist; Nicholas P. Restifo; Max Löhning; Adrian F. Ochsenbein; Gary J. Nabel; Daniel D. Pinschewer
Lymphocytic choriomeningitis virus (LCMV) exhibits natural tropism for dendritic cells and represents the prototypic infection that elicits protective CD8+ T cell (cytotoxic T lymphocyte (CTL)) immunity. Here we have harnessed the immunobiology of this arenavirus for vaccine delivery. By using producer cells constitutively synthesizing the viral glycoprotein (GP), it was possible to replace the gene encoding LCMV GP with vaccine antigens to create replication-defective vaccine vectors. These rLCMV vaccines elicited CTL responses that were equivalent to or greater than those elicited by recombinant adenovirus 5 or recombinant vaccinia virus in their magnitude and cytokine profiles, and they exhibited more effective protection in several models. In contrast to recombinant adenovirus 5, rLCMV failed to elicit vector-specific antibody immunity, which facilitated re-administration of the same vector for booster vaccination. In addition, rLCMV elicited T helper type 1 CD4+ T cell responses and protective neutralizing antibodies to vaccine antigens. These features, together with low seroprevalence in humans, suggest that rLCMV may show utility as a vaccine platform against infectious diseases and cancer.
Nature Immunology | 2015
Christopher Schliehe; Elizabeth K. Flynn; Bojan Vilagos; Udochuku Richson; Savitha Swaminathan; Berislav Bošnjak; Lisa Bauer; Richard K. Kandasamy; Isabel M Griesshammer; Lindsay Kosack; Frank Schmitz; Vladimir Litvak; James Sissons; Alexander Lercher; Anannya Bhattacharya; Kseniya Khamina; Anna L. Trivett; Lino Tessarollo; Ildiko Mesteri; Anastasiya Hladik; Doron Merkler; Stefan Kubicek; Sylvia Knapp; Michelle M. Epstein; David E. Symer; Alan Aderem; Andreas Bergthaler
Immune responses are tightly regulated to ensure efficient pathogen clearance while avoiding tissue damage. Here we report that Setdb2 was the only protein lysine methyltransferase induced during infection with influenza virus. Setdb2 expression depended on signaling via type I interferons, and Setdb2 repressed expression of the gene encoding the neutrophil attractant CXCL1 and other genes that are targets of the transcription factor NF-κB. This coincided with occupancy by Setdb2 at the Cxcl1 promoter, which in the absence of Setdb2 displayed diminished trimethylation of histone H3 Lys9 (H3K9me3). Mice with a hypomorphic gene-trap construct of Setdb2 exhibited increased infiltration of neutrophils during sterile lung inflammation and were less sensitive to bacterial superinfection after infection with influenza virus. This suggested that a Setdb2-mediated regulatory crosstalk between the type I interferons and NF-κB pathways represents an important mechanism for virus-induced susceptibility to bacterial superinfection.
Proceedings of the National Academy of Sciences of the United States of America | 2010
Andreas Bergthaler; Lukas Flatz; Ahmed N. Hegazy; Susan Johnson; Edit Horvath; Max Löhning; Daniel D. Pinschewer
The Clone 13 (Cl13) strain of lymphocytic choriomeningitis virus is widely studied as a model of chronic systemic viral infection. Here, we used reverse genetic techniques to identify the molecular basis of Cl13 persistence and immunosuppression, the characteristics differentiating it from the closely related Armstrong strain. We found that a single-point mutation in the Cl13 polymerase was necessary and partially sufficient for viral persistence and immunosuppression. A glycoprotein mutation known to enhance dendritic cell targeting accentuated both characteristics but when introduced alone, failed to alter the phenotype of the Armstrong strain. The decisive polymerase mutation increased intracellular viral RNA load in plasmacytoid dendritic cells, which we identified as a main initial target cell type in vivo, and increased viremia in the early phase of infection. These findings establish the enhanced replicative capacity as the primary determinant of the Cl13 phenotype. Viral persistence and immunosuppression can, thus, represent a direct consequence of excessive viral replication overwhelming the hosts antiviral defense.
PLOS Pathogens | 2010
Lukas Flatz; Toni Rieger; Doron Merkler; Andreas Bergthaler; Tommy Regen; Mariann Schedensack; Lukas Bestmann; Admar Verschoor; Mario Kreutzfeldt; Wolfgang Brück; Uwe-Karsten Hanisch; Stephan Günther; Daniel D. Pinschewer
Lassa virus (LASV), the causative agent of Lassa fever (LF), is endemic in West Africa, accounting for substantial morbidity and mortality. In spite of ongoing research efforts, LF pathogenesis and mechanisms of LASV immune control remain poorly understood. While normal laboratory mice are resistant to LASV, we report that mice expressing humanized instead of murine MHC class I (MHC-I) failed to control LASV infection and develop severe LF. Infection of MHC-I knockout mice confirmed a key role for MHC-I-restricted T cell responses in controlling LASV. Intriguingly we found that T cell depletion in LASV-infected HHD mice prevented disease, irrespective of high-level viremia. Widespread activation of monocyte/macrophage lineage cells, manifest through inducible NO synthase expression, and elevated IL-12p40 serum levels indicated a systemic inflammatory condition. The absence of extensive monocyte/macrophage activation in T cell-depleted mice suggested that T cell responses contribute to deleterious innate inflammatory reactions and LF pathogenesis. Our observations in mice indicate a dual role for T cells, not only protecting from LASV, but also enhancing LF pathogenesis. The possibility of T cell-driven enhancement and immunopathogenesis should be given consideration in future LF vaccine development.
PLOS Biology | 2009
Andreas Bergthaler; Lukas Flatz; Admar Verschoor; Ahmed N. Hegazy; Martin Holdener; Katja Fink; Bruno Eschli; Doron Merkler; Rami Sommerstein; Edit Horvath; Marylise Fernandez; André Fitsche; Beatrice M. Senn; J. Sjef Verbeek; Bernhard Odermatt; Claire-Anne Siegrist; Daniel D. Pinschewer
CD8 T cells are recognized key players in control of persistent virus infections, but increasing evidence suggests that assistance from other immune mediators is also needed. Here, we investigated whether specific antibody responses contribute to control of lymphocytic choriomeningitis virus (LCMV), a prototypic mouse model of systemic persistent infection. Mice expressing transgenic B cell receptors of LCMV-unrelated specificity, and mice unable to produce soluble immunoglobulin M (IgM) exhibited protracted viremia or failed to resolve LCMV. Virus control depended on immunoglobulin class switch, but neither on complement cascades nor on Fc receptor γ chain or Fc γ receptor IIB. Cessation of viremia concurred with the emergence of viral envelope-specific antibodies, rather than with neutralizing serum activity, and even early nonneutralizing IgM impeded viral persistence. This important role for virus-specific antibodies may be similarly underappreciated in other primarily T cell–controlled infections such as HIV and hepatitis C virus, and we suggest this contribution of antibodies be given consideration in future strategies for vaccination and immunotherapy.
Nature Medicine | 2007
Mike Recher; Karl S. Lang; Alexander A. Navarini; Lukas Hunziker; Philipp A. Lang; Katja Fink; Stefan Freigang; Panco Georgiev; Lars Hangartner; Raphaël M. Zellweger; Andreas Bergthaler; Ahmed N. Hegazy; Bruno Eschli; Alexandre Theocharides; Lukas T. Jeker; Doron Merkler; Bernhard Odermatt; Martin Hersberger; Hans Hengartner; Rolf M. Zinkernagel
T helper cells can support the functions of CD8+ T cells against persistently infecting viruses such as murine lymphocytic choriomeningitis virus (LCMV), cytomegalovirus, hepatitis C virus and HIV. These viruses often resist complete elimination and remain detectable at sanctuary sites, such as the kidneys and other extralymphatic organs. The mechanisms underlying this persistence are not well understood. Here we show that mice with potent virus-specific T-cell responses have reduced levels and delayed formation of neutralizing antibodies, and these mice fail to clear LCMV from extralymphatic epithelia. Transfer of virus-specific B cells but not virus-specific T cells augmented virus clearance from persistent sites. Virus elimination from the kidneys was associated with the formation of IgG deposits in the interstitial space, presumably from kidney-infiltrating B cells. CD8+ T cells in the kidneys of mice that did not clear virus from this site were activated but showed evidence of exhaustion. Thus, we conclude that in this model of infection, site-specific virus persistence develops as a consequence of potent immune activation coupled with reductions in virus-specific neutralizing antibodies. Our results suggest that sanctuary-site formation depends both on organ anatomy and on the induction of different adaptive immune effector mechanisms. Boosting T-cell responses alone may not reduce virus persistence.
Blood | 2008
Philipp A. Lang; Luisa Cervantes-Barragan; Admar Verschoor; Alexander A. Navarini; Mike Recher; Marc Pellegrini; Lukas Flatz; Andreas Bergthaler; Kenya Honda; Burkhard Ludewig; Pamela S. Ohashi; Karl S. Lang
Type I interferon (IFN-I) strongly inhibits viral replication and is a crucial factor in controlling virus infections and diseases. Cellular activation through pattern recognition receptors induces interferon production in a wide variety of hematopoietic and nonhematopoietic cell types, including dendritic cells, fibroblasts, hepatocytes, and cells of neuronal origin. The relative contribution of hematopoietic and nonhematopoietic cells to the overall interferon response is an important issue which has not been fully addressed. Using irf7(-/-) and wild-type bone marrow chimeras we analyzed the contribution of IFN-I from bone marrow-derived sources in the control of viral infections and immunopathology in mice. We found that during systemic cytopathic virus infection, hematopoietic cells were essential for production of IFN-I, inhibition of viral spread to peripheral organs, and limiting cell damage. In a model of autoimmune diabetes induced by noncytopathic virus infection, hematopoietic cell-derived IFN-I was essential for CD8(+) T cell-dependent cytotoxicity in pancreatic beta-islet cells and induction of diabetes. These data suggest that during systemic viral infection primarily hematopoietic cell-derived IFN-I controls viral replication and viral-induced disease.