Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andreas Betz is active.

Publication


Featured researches published by Andreas Betz.


Journal of Biological Chemistry | 1998

Regions Remote from the Site of Cleavage Determine Macromolecular Substrate Recognition by the Prothrombinase Complex

Andreas Betz; Sriram Krishnaswamy

The proteolytic formation of thrombin is catalyzed by the prothrombinase complex of blood coagulation. The kinetics of prethrombin 2 cleavage was studied to delineate macromolecular substrate structures necessary for recognition at the exosite(s) of prothrombinase. The product, α-thrombin, was a linear competitive inhibitor of prethrombin 2 activation without significantly inhibiting peptidyl substrate cleavage by prothrombinase. Prethrombin 2 and α-thrombin compete for binding to the exosite without restricting access to the active site of factor Xa within prothrombinase. Inhibition by α-thrombin was not altered by saturating concentrations of low molecular weight heparin. Furthermore, proteolytic removal of the fibrinogen recognition site in α-thrombin only had a modest effect on its inhibitory properties. Both α-thrombin and prethrombin 2 were cleaved with chymotrypsin at Trp148 and separated into component domains. The C-terminal-derived ζ2 fragment retained the ability to selectively inhibit macromolecular substrate cleavage by prothrombinase, while the ζ1 fragment was without effect. As the ζ2 fragment lacks the fibrinogen recognition site, the P1-P3 residues or the intact cleavage site, specific recognition of the macromolecular substrate by the exosite in prothrombinase is achieved through substrate regions, distinct from the fibrinogen recognition or heparin-binding sites, and spatially removed from structures surrounding the scissile bond.


Journal of Pharmacology and Experimental Therapeutics | 2012

Specific Inhibition of Spleen Tyrosine Kinase Suppresses Leukocyte Immune Function and Inflammation in Animal Models of Rheumatoid Arthritis

Greg Coffey; Francis DeGuzman; Mayuko Inagaki; Yvonne Pak; Suzanne M. Delaney; Dan Ives; Andreas Betz; Zhaozhong J. Jia; Anjali Pandey; Dale A. Baker; Stanley J. Hollenbach; David R. Phillips; Uma Sinha

Based on genetic studies that establish the role of spleen tyrosine kinase (Syk) in immune function, inhibitors of this kinase are being investigated as therapeutic agents for inflammatory diseases. Because genetic studies eliminate both adapter functions and kinase activity of Syk, it is difficult to delineate the effect of kinase inhibition alone as would be the goal with small-molecule kinase inhibitors. We tested the hypothesis that specific pharmacological inhibition of Syk activity retains the immunomodulatory potential of Syk genetic deficiency. We report here on the discovery of (4-(3-(2H-1,2,3-triazol-2-yl)phenylamino)-2-((1R,2S)-2-aminocyclohexylamino) pyrimidine-5-carboxamide acetate (P505-15), a highly specific and potent inhibitor of purified Syk (IC50 1–2 nM). In human whole blood, P505-15 potently inhibited B cell antigen receptor-mediated B cell signaling and activation (IC50 0.27 and 0.28 μM, respectively) and Fcε receptor 1-mediated basophil degranulation (IC50 0.15 μM). Similar levels of ex vivo inhibition were measured after dosing in mice (Syk signaling IC50 0.32 μM). Syk-independent signaling and activation were unaffected at much higher concentrations, demonstrating the specificity of kinase inhibition in cellular systems. Oral administration of P505-15 produced dose-dependent anti-inflammatory activity in two rodent models of rheumatoid arthritis. Statistically significant efficacy was observed at concentrations that specifically suppressed Syk activity by ∼67%. Thus specific Syk inhibition can mimic Syk genetic deficiency to modulate immune function, providing a therapeutic strategy in P505-15 for the treatment of human diseases.


Biochemistry | 1997

Exosites determine macromolecular substrate recognition by prothrombinase.

Sriram Krishnaswamy; Andreas Betz

The prothrombinase complex, composed of factor Xa and factor Va assembled on a membrane surface, catalyzes the proteolytic formation of thrombin during blood coagulation. The molecular basis for the macromolecular substrate specificity of prothrombinase is poorly understood. By kinetic studies of prethrombin 2 cleavage by prothrombinase in the presence or absence of fragment 1.2, we show that occupation of the active site of the catalyst by inhibitors or alternate peptidyl substrates does not alter the affinity for prethrombin 2. Productive recognition of the macromolecular substrate therefore results from an initial interaction at enzymic sites (exosites) distinct from the active site, which largely determines substrate affinity. This interaction at exosites is evident even in the absence of activation peptide domains responsible for mediating the binding of the substrate to membranes or factor Va. Interactions at the active site with structures surrounding the scissile bond then precede bond cleavage and product release. The second binding step, which appears unfavorable, does not affect substrate affinity but contributes to the maximum catalytic rate. Therefore, binding specificity of prothrombinase for the macromolecular substrate is determined by exosites on the enzyme. We show that competitive inhibition of prethrombin 2 cleavage can be accomplished by interfering with the exosite binding step without obscuring the active site of the enzyme. These findings suggest limitations to the common approach of inferring the basis of factor Xa specificity with active site mutants or the targeting the active site of factor Xa with reversible inhibitors for therapeutic purposes. The achievement of distinctive macromolecular substrate specificities through exosite interactions and modulation of maximum catalytic rate through binding steps may also underlie the reactions catalyzed by the other coagulation complexes containing trypsin-like enzymes.


Journal of Pharmacology and Experimental Therapeutics | 2013

The Selective Syk Inhibitor P505-15 (PRT062607) Inhibits B Cell Signaling and Function In Vitro and In Vivo and Augments the Activity of Fludarabine in Chronic Lymphocytic Leukemia

Stephen E. Spurgeon; Greg Coffey; Luke B. Fletcher; Russell T. Burke; Jeffrey W. Tyner; Brian J. Druker; Andreas Betz; Francis DeGuzman; Yvonne Pak; Dale A. Baker; Anjali Pandey; Stanley J. Hollenbach; Uma Sinha; Marc Loriaux

B-cell receptor (BCR) associated kinases including spleen tyrosine kinase (SYK) contribute to the pathogenesis of B-cell malignancies. SYK is persistently phosphorylated in a subset of non-Hodgkin lymphoma (NHL) and chronic lymphocytic leukemia (CLL), and SYK inhibition results in abrogation of downstream kinase activity and apoptosis. P505-15 (also known as PRT062607) is a novel, highly selective, and orally bioavailable small molecule SYK inhibitor (SYK IC50 = 1 nM) with anti-SYK activity that is at least 80-fold greater than its affinity for other kinases. We evaluated the preclinical characteristics of P505-15 in models of NHL and CLL. P505-15 successfully inhibited SYK-mediated B-cell receptor signaling and decreased cell viability in NHL and CLL. Oral dosing in mice prevented BCR-mediated splenomegaly and significantly inhibited NHL tumor growth in a xenograft model. In addition, combination treatment of primary CLL cells with P505-15 plus fludarabine produced synergistic enhancement of activity at nanomolar concentrations. Our findings support the ongoing development of P505-15 as a therapeutic agent for B-cell malignancies. A dose finding study in healthy volunteers has been completed.


Biochimica et Biophysica Acta | 2001

Antithrombin binding of low molecular weight heparins and inhibition of factor Xa

Pei-Hua Lin; Uma Sinha; Andreas Betz

Fluorescence and stopped flow methods were used to compare clinically used heparins with regard to their ability to bind to antithrombin and to accelerate the inactivation of factor Xa. Titration of antithrombin with both low molecular weight heparin (LMWH) (enoxaparin, fragmin and ardeparin) and unfractionated heparin (UFH) produced an equivalent fluorescence increase and indicates similar affinity of all heparin preparations to antithrombin. However, relative to UFH enoxaparin, the LMWH with the smallest average molecular mass, contained only 12% material with high affinity for antithrombin. The rate of factor Xa inhibition by antithrombin increased with the concentration of the examined heparins to the same limiting value, but the concentration required for maximal acceleration depended on the preparation. According to these data the high affinity fraction of the heparin preparations increased the intrinsic fluorescence and inhibitory activity equally without additional effects by variations in chain length and chemical composition. In contrast, in the presence of Ca UFH accelerated the inhibition of factor Xa by antithrombin 10-fold more efficiently than comparable concentrations of the high affinity fractions of enoxaparin and fragmin. The bell-shaped dependence of this accelerating effect suggests simultaneous binding of both proteins to heparin. In conclusion, under physiologic conditions the anti-factor Xa activity of heparin results from a composite effect of chain length and the content of material with high affinity to antithrombin. Thus, the reduced antithrombotic activity of LMWH relative to UFH results from a smaller content of high affinity material and the absence of a stimulating effect of calcium.


Journal of Pharmacology and Experimental Therapeutics | 2014

The Novel Kinase Inhibitor PRT062070 (Cerdulatinib) Demonstrates Efficacy in Models of Autoimmunity and B-Cell Cancer

Greg Coffey; Andreas Betz; Francis DeGuzman; Yvonne Pak; Mayuko Inagaki; Dale C. Baker; Stanley J. Hollenbach; Anjali Pandey; Uma Sinha

The heterogeneity and severity of certain autoimmune diseases and B-cell malignancies warrant simultaneous targeting of multiple disease-relevant signaling pathways. Dual inhibition of spleen tyrosine kinase (SYK) and Janus kinase (JAK) represents such a strategy and may elicit several benefits relative to selective kinase inhibition, such as gaining control over a broader array of disease etiologies, reducing probability of selection for bypass disease mechanisms, and the potential that an overall lower level suppression of individual targets may be sufficient to modulate disease activity. To this end, we provide data on the discovery and preclinical development of PRT062070 [4-(cyclopropylamino)-2-({4-[4-(ethylsulfonyl)piperazin-1-yl]phenyl}amino)pyrimidine-5-carboxamide hydrochloride], an orally active kinase inhibitor that demonstrates activity against SYK and JAK. Cellular assays demonstrated specific inhibitory activity against signaling pathways that use SYK and JAK1/3. Limited inhibition of JAK2 was observed, and PRT062070 did not inhibit phorbol 12-myristate 13-acetate–mediated signaling or activation in B and T cells nor T-cell antigen receptor–mediated signaling in T cells, providing evidence for selectivity of action. Potent antitumor activity was observed in a subset of B-cell lymphoma cell lines. After oral dosing, PRT062070 suppressed inflammation and autoantibody generation in a rat collagen-induced arthritis model and blocked B-cell activation and splenomegaly in a mouse model of chronic B-cell antigen receptor stimulation. PRT062070 is currently under evaluation in a phase I dose escalation study in patients with B-cell leukemia and lymphoma (NCT01994382), with proof-of-concept studies in humans planned to assess therapeutic potential in autoimmune and malignant diseases.


Thrombosis Research | 2002

Differences between human and rabbit coagulation factor X-implications for in vivo models of thrombosis.

Susan T. Edwards; Andreas Betz; Harold L. James; Erika Thompson; Shirlee J Yonkovich; Uma Sinha

The activation of factor X (fX) to factor Xa (fXa) marks the penultimate step in the coagulation cascade and modulating fXa activity may be effective for antithrombotic therapy. Even though fXa inhibitors are screened using in vitro inhibition of human fXa (HfXa) while subsequent evaluation uses in vivo rabbit models, there is limited knowledge of species differences between the coagulation proteins. When comparing amino acid sequences for the human (HfX) and rabbit (RafX) protein, differences are found in the activation peptide and active site regions. In order to study the relative functional characteristics of HfX and RafX, we asked (1) whether fX from the two species is immunologically related, (2) whether the two proteins are activated to fXa in a similar manner, (3) whether HfXa and rabbit factor Xa (RafXa) have similar catalytic activities toward tripeptide substrates. To answer (1), we expressed RafX-glutathione S-transferase (RafX-GST) fusion protein in bacteria and purified the protein for use as an antigen. The resulting monoclonal antibodies were suitable for affinity purification of plasma RafX and for effective anticoagulation in rabbit plasma clotting assays. We found two antibodies (mAb 214 and mAb 290) that anticoagulated rabbit plasma in a dose responsive manner but did not cross-react with human plasma. At a concentration of 500 nM, mAb 214 attained a two-fold extension of rabbit plasma activated partial thromboplastin time (aPTT). To answer (2), we purified plasma RafX and compared the activation of HfX and RafX with Russells viper venom (RVV-X). Under equivalent reaction conditions, conversion was 30% slower for the rabbit protein. To answer (3), amidolytic activity of HfXa and RafXa were assayed by cleavage of three para-nitroanilide (pNA) substrates (S2222 [Bz-Ile-Glu(gamma-OR)-Gly-Arg-pNA.HCl], S2765 [Z-D-Arg-Gly-Arg-pNA.HCl] and Spectrozyme Xa [MeO-CO-D-CHG-Gly-Arg-pNA.AcOH]). Michaelis constants (K(m)) for the rabbit protein were 187, 72 and 69 microM, respectively, and for the human analog, 255, 63 and 135 microM, respectively. Comparing the extent of substrate turnover (V(max)) for HfXa and RafXa, the latter was shown to cleave all three substrates at a reduced rate. Based on these observations, it can be speculated that the relative antithrombotic potency of active site directed fXa inhibitors might be different between the two species. Predicted human therapeutic doses derived from in vivo results in rabbit models should therefore take species variation into consideration.


Biochemistry | 1991

Mechanistic studies on thrombin catalysis.

Stuart R. Stone; Andreas Betz; Jan Hofsteenge


Biochemistry | 1994

Transient Hydrogen Bonds Identified on the Surface of the NMR Solution Structure of Hirudin

Thomas Szyperski; Walfrido Antuch; Martin Schick; Andreas Betz; Stuart R. Stone; Kurt Wuethrich


Biochemistry | 1992

Interaction of the N-terminal region of hirudin with the active-site cleft of thrombin

Andreas Betz; Jan Hofsteenge; Stuart R. Stone

Collaboration


Dive into the Andreas Betz's collaboration.

Top Co-Authors

Avatar

Uma Sinha

Millennium Pharmaceuticals

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anjali Pandey

Millennium Pharmaceuticals

View shared research outputs
Top Co-Authors

Avatar

Jan Hofsteenge

Beth Israel Deaconess Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dale A. Baker

University of California

View shared research outputs
Top Co-Authors

Avatar

Francis DeGuzman

Millennium Pharmaceuticals

View shared research outputs
Top Co-Authors

Avatar

Sriram Krishnaswamy

Children's Hospital of Philadelphia

View shared research outputs
Top Co-Authors

Avatar

David R. Phillips

Millennium Pharmaceuticals

View shared research outputs
Researchain Logo
Decentralizing Knowledge