Andreas Billich
Novartis
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Andreas Billich.
Nature Reviews Drug Discovery | 2010
Volker Brinkmann; Andreas Billich; Thomas Baumruker; Peter Heining; Robert Schmouder; Gordon Francis; Shreeram Aradhye; Pascale Burtin
The discovery of fingolimod (FTY720/Gilenya; Novartis), an orally active immunomodulatory drug, has opened up new approaches to the treatment of multiple sclerosis, the most common inflammatory disorder of the central nervous system. Elucidation of the effects of fingolimod — mediated by the modulation of sphingosine 1-phosphate (S1P) receptors — has indicated that its therapeutic activity could be due to regulation of the migration of selected lymphocyte subsets into the central nervous system and direct effects on neural cells, particularly astrocytes. An improved understanding of the biology of S1P receptors has also been gained. This article describes the discovery and development of fingolimod, which was approved by the US Food and Drug Administration in September 2010 as a first-line treatment for relapsing forms of multiple sclerosis, thereby becoming the first oral disease-modifying therapy to be approved for multiple sclerosis in the United States.
Journal of Biological Chemistry | 2003
Andreas Billich; Frédéric Bornancin; Piroska Dévay; Diana Mechtcheriakova; Nicole Urtz; Thomas Baumruker
The immunomodulatory drug FTY720 is phosphorylated in vivo, and the resulting FTY720 phosphate as a ligand for sphingosine-1-phosphate receptors is responsible for the unique biological effects of the compound. So far, phosphorylation of FTY720 by murine sphingosine kinase (SPHK) 1a had been documented. We found that, while FTY720 is also phosphorylated by human SPHK1, the human type 2 isoform phosphorylates the drug 30-fold more efficiently, because of a lower Km of FTY720 for SPHK2. Similarly, murine SPHK2 was more efficient than SPHK1a. Among splice variants of the human SPHKs, an N-terminally extended SPHK2 isoform was even more active than SPHK2 itself. Further SPHK superfamily members, namely ceramide kinase and a “SPHK-like” protein, failed to phosphorylate sphingosine and FTY720. Thus, only SPHK1 and 2 appear to be capable of phosphorylating FTY720. Using selective assay conditions, SPHK1 and 2 activities in murine tissues were measured. While activity of SPHK2 toward sphingosine was generally lower than of SPHK1, FTY720 phosphorylation was higher under conditions favoring SPHK2. In human endothelial cells, while activity of SPHK1 toward sphingosine was 2-fold higher than of SPHK2, FTY720 phosphorylation was 7-fold faster under SPHK2 assay conditions. Finally, FTY720 was poorly phosphorylated in human blood as compared with rodent blood, in line with the low activity of SPHK1 and in particular of SPHK2 in human blood. To conclude, both SPHK1 and 2 are capable of phosphorylating FTY720, but SPHK2 is quantitatively more important than SPHK1.
International Journal of Pharmaceutics | 2001
Fritz Schmook; Josef G. Meingassner; Andreas Billich
For the study of in-vitro skin penetration of candidate drugs, excised animal skin is frequently used as a replacement for human skin. Reconstructed human skin or epidermis equivalents have been proposed as alternatives. We compared the penetration properties of human, pig and rat skin with the Graftskin LSE (living skin equivalent) and the Skinethic HRE (human reconstructed epidermis) models using four topical dermatological drugs (salicylic acid, hydrocortisone, clotrimazole and terbinafine) with widely varying polarity. In agreement with published data, pig skin appeared as the most suitable model for human skin: the fluxes through the skin and concentrations in the skin were of the same order of magnitude for both tissues, with differences of at most two- or fourfold, respectively. Graftskin LSE provided an adequate barrier to salicylic acid, but was very permeable for the more hydrophobic compounds (e.g. about 900-fold higher flux and 50-fold higher skin concentrations of clotrimazole as compared to human skin), even more than rat skin. In the case of the Skinethic HRE, we found similar concentrations of salicylic acid as in human skin and an approximately sevenfold higher flux. In contrast, the permeation of hydrophobic compounds through the epidermal layer was vastly higher than through split-thickness human skin (up to a factor of about 800). To conclude, currently available reconstituted skin models cannot be regarded as generally useful for in-vitro penetration studies.
Journal of Pharmacology and Experimental Therapeutics | 2007
Carolyn A. Foster; Laurence M. Howard; Alain Schweitzer; Elke Persohn; Peter Hiestand; Balázs Balatoni; Roland Reuschel; Christian Beerli; Manuela Schwartz; Andreas Billich
FTY720 [2-amino-2-[2-(4-octylphenyl) ethyl]propane-1,3-diol hydrochloride] is an oral sphingosine-1-phosphate receptor modulator under development for the treatment of multiple sclerosis (MS). The drug is phosphorylated in vivo by sphingosine kinase 2 to its bioactive form, FTY720-P. Although treatment with FTY720 is accompanied by a reduction of the peripheral lymphocyte count, its efficacy in MS and experimental autoimmune encephalomyelitis (EAE) may be due to additional, direct effects in the central nervous system (CNS). We now show that FTY720 localizes to the CNS white matter, preferentially along myelin sheaths. Brain trough levels of FTY720 and FTY720-P in rat EAE are of the same magnitude and dose dependently increase; they are in the range of 40 to 540 ng/g in the brain tissue at efficacious doses and exceed blood concentrations severalfold. In a rat model of chronic EAE, prolonged treatment with 0.03 mg/kg was efficacious, but limiting the dosing period failed to prevent EAE despite a significant decrease in blood lymphocytes. FTY720 effectiveness is likely due to a culmination of mechanisms involving reduction of autoreactive T cells, neuroprotective influence of FTY720-P in the CNS, and inhibition of inflammatory mediators in the brain.
Lipids in Health and Disease | 2010
Satoru Niwa; Nicole Urtz; Thomas Baumruker; Andreas Billich; Frédéric Bornancin
Ceramide kinase (CERK) produces the bioactive lipid ceramide-1-phosphate (C1P) and is a key regulator of ceramide and dihydroceramide levels. It is likely that CERK and C1P play a role in inflammatory processes but the cells involved and the mechanisms used remain to be clarified. In particular, the impact of CERK on T-cell biology has not been studied so far. Here, we used Cerk-/- mice backcrossed with DO11.10/RAG1-/- mice to probe the effect of CERK ablation on T-cell activation. Levels of interleukin (IL)-2, IL-4, IL-5, IL-13, of tumor necrosis factor (TNF)-α, and of interferon (INF)-γ were recorded following ovalbumin challenge in vivo and using ovalbumin-treated splenocytes ex- vivo. Absence of CERK led to a significant decrease in the production of IL-4, thus suggesting that CERK may polarize T cells towards the TH2 cell subtype. However, the importance of CERK to TH2 cell biology will have to be investigated further because in a model of asthma, which is TH2-cell driven, Cerk-/- mice responded like wild-type animals.
The Journal of Steroid Biochemistry and Molecular Biology | 2000
Andreas Billich; Peter Nussbaumer; Philipp Lehr
Steroid sulfatase (STS) regulates the formation of active steroids from systemic precursors, such as estrone sulfate and dehydroepiandrosterone sulfate (DHEAS). In breast tissues, this pathway is a source for local production of estrogens, which support the growth of endocrine-dependent tumours. Therefore, inhibitors of STS could have therapeutic potential. In this study, we report on substituted chromenone sulfamates as a novel class of non-steroidal irreversible inhibitors of STS. The compounds are substantially more potent (6- to 80-fold) than previously described types of non-steroidal inhibitors when tested against purified STS. In MCF-7 breast cancer cells, they inhibit STS activity with IC(50) below 100 pM. Importantly, the compounds also potently block estrone sulfate-stimulated growth of MCF-7 cells, again with IC(50) below 100 pM. For one compound, we also observed a lack of any estrogenic effect at high concentrations (1 microM). We also demonstrate for the first time that STS inhibitors can block the DHEAS-stimulated growth of MCF-7 cells. Interestingly, this cannot be achieved with specific inhibitors of the aromatase, suggesting that stimulation of MCF-7 cell growth by DHEAS follows an aromatase-independent pathway. This gives further justification to consider steroid sulfatase inhibitors as potential drugs in the therapy of breast cancer.
Journal of Immunology | 2001
Gerhard Zenke; Ulrike Strittmatter; Serge Y. Fuchs; Valerie Quesniaux; Volker Brinkmann; Walter Schuler; Mauro Zurini; Albert Enz; Andreas Billich; Jean-Jacques Sanglier; Theo Fehr
We report here on the characterization of the novel immunosuppressant Sanglifehrin A (SFA). SFA is a representative of a class of macrolides produced by actinomycetes that bind to cyclophilin A (CypA), the binding protein of the fungal cyclic peptide cyclosporin A (CsA). SFA interacts with high affinity with the CsA binding side of CypA and inhibits its peptidyl-prolyl isomerase activity. The mode of action of SFA is different from known immunosuppressive drugs. It has no effect on the phosphatase activity of calcineurin, the target of the immunosuppressants CsA and FK506 when complexed to their binding proteins CypA and FK binding protein, respectively. Moreover, its effects are independent of binding of cyclophilin. SFA inhibits alloantigen-stimulated T cell proliferation but acts at a later stage than CsA and FK506. In contrast to these drugs, SFA does not affect IL-2 transcription or secretion. However, it blocks IL-2-dependent proliferation and cytokine production of T cells, in this respect resembling rapamycin. SFA inhibits the proliferation of mitogen-activated B cells, but, unlike rapamycin, it has no effect on CD154/IL-4-induced Ab synthesis. The activity of SFA is also different from that of other known late-acting immunosuppressants, e.g., mycophenolate mofetil or brequinar, as it does not affect de novo purine and pyrimidine biosynthesis. In summary, we have identified a novel immunosuppressant, which represents, in addition to CsA, FK506 and rapamycin, a fourth class of immunophilin-binding metabolites with a new, yet undefined mechanism of action.
Biochimica et Biophysica Acta | 2014
Marc Bigaud; Danilo Guerini; Andreas Billich; Frederic Bassilana; Volker Brinkmann
Multiple Sclerosis (MS) is a chronic autoimmune disorder affecting the central nervous system (CNS) through demyelination and neurodegeneration. Until recently, major therapeutic treatments have relied on agents requiring injection delivery. In September 2010, fingolimod/FTY720 (Gilenya, Novartis) was approved as the first oral treatment for relapsing forms of MS. Fingolimod causes down-modulation of S1P1 receptors on lymphocytes which prevents the invasion of autoaggressive T cells into the CNS. In astrocytes, down-modulation of S1P1 by the drug reduces astrogliosis, a hallmark of MS, thereby allowing restoration of productive astrocyte communication with other neural cells and the blood brain barrier. Animal data further suggest that the drug directly supports the recovery of nerve conduction and remyelination. In human MS, such mechanisms may explain the significant decrease in the number of inflammatory markers on brain magnetic resonance imaging in recent clinical trials, and the reduction of brain atrophy by the drug. Fingolimod binds to 4 of the 5 known S1P receptor subtypes, and significant efforts were made over the past 5 years to develop next generation S1P receptor modulators and determine the minimal receptor selectivity needed for maximal therapeutic efficacy in MS patients. Other approaches considered were competitive antagonists of the S1P1 receptor, inhibitors of the S1P lyase to prevent S1P degradation, and anti-S1P antibodies. Below we discuss the current status of the field, and the functional properties of the most advanced compounds. This article is part of a Special Issue entitled New Frontiers in Sphingolipid Biology.
Expert Opinion on Investigational Drugs | 2007
Thomas Baumruker; Andreas Billich; Volker Brinkmann
FTY720 (fingolimod; 2-amino-2[2-(4-octylphenyl)ethyl]-1,3-propanediol, Novartis) is the prototype of a new generation of immunomodulators. The drug is the result of extensive chemical derivatisation based on the natural product myriocin, isolated from the ascomycete Isaria sinclairii. FTY720 bears structural similarity to sphingosine, a naturally occurring sphingolipid. As with sphingosine, FTY720 is effectively phosphorylated by sphingosine kinases in vivo and the phosphorylated drug targets G-protein-coupled receptors for sphingosine-1-phosphate (S1P). Gene deletion and reverse pharmacology studies have shown that FTY720 acts at S1P1 receptors on lymphocytes and the endothelium, thereby inhibiting the egress of T- and B cells from secondary lymphoid organs into the blood and their recirculation to inflamed tissues. Animal studies suggest that this novel mechanism translates into effective treatments for several autoimmune diseases and a recently completed Phase II clinical trial highlighted FTY720 as a potential therapy for relapsing-remitting multiple sclerosis.
Molecular and Cellular Biology | 2004
Nicole Urtz; Ana Olivera; Elisa Bofill‐Cardona; Robert Csonga; Andreas Billich; Diana Mechtcheriakova; Frédéric Bornancin; Max Woisetschläger; Juan Rivera; Thomas Baumruker
ABSTRACT Sphingosine kinase has been recognized as an essential signaling molecule that mediates the intracellular conversion of sphingosine to sphingosine-1-phosphate. In mast cells, induction of sphingosine kinase and generation of sphingosine-1-phosphate have been linked to the initial rise in Ca2+, released from internal stores, and to degranulation. These events either precede or are concomitant with the activation of phospholipase C-γ and the generation of inositol trisphosphate. Here we show that sphingosine kinase type 1 (SPHK1) interacts directly with the tyrosine kinase Lyn and that this interaction leads to the recruitment of this lipid kinase to the high-affinity receptor for immunoglobulin E (FcεRI). The interaction of SPHK1 with Lyn caused enhanced lipid and tyrosine kinase activity. After FcεRI triggering, enhanced sphingosine kinase activity was associated with FcεRI in sphingolipid-enriched rafts of mast cells. Bone marrow-derived mast cells from Lyn−/ − mice, compared to syngeneic wild-type cells, were defective in the initial induction of SPHK1 activity, and the defect was overcome by retroviral Lyn expression. These findings position the activation of SPHK1 as an FcεRI proximal event.