Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andreas Boberg is active.

Publication


Featured researches published by Andreas Boberg.


Molecular Therapy | 2007

A New Multi-clade DNA Prime/Recombinant MVA Boost Vaccine Induces Broad and High Levels of HIV-1-specific CD8+ T-cell and Humoral Responses in Mice

Andreas Bråve; Andreas Boberg; Lindvi Gudmundsdotter; Erik Rollman; Kristian Hallermalm; Karl Ljungberg; Pontus Blomberg; Richard Stout; Staffan Paulie; Eric Sandström; Gunnel Biberfeld; Patricia L. Earl; Bernard Moss; Josephine H. Cox; Britta Wahren

The results presented here are from the preclinical evaluation in BALB/c mice of a DNA prime/modified vaccinia virus Ankara (MVA) boost multi-gene multi-subtype human immunodeficiency virus-1 (HIV-1) vaccine intended for use in humans. The plasmid DNA vaccine was delivered intradermally using a Biojector, and the MVA was delivered intramuscularly by needle. This combination of recombinant DNA and MVA proved to induce extraordinarily strong cellular responses, with more than 80% of the CD8+ T cells specific for HIV-1 antigens. Furthermore, we show that the DNA priming increases the number of T-cell epitopes recognized after the MVA boost. In the prime/boost-immunized animals, a significant proportion of CD8+ T cells were stained positive for both interferon-γ (IFN-γ) and interleukin-2 (IL-2), a feature that has been associated with control of HIV-1 infection in long-term non-progressors. The HIV-1-specific antibody levels were moderate after the plasmid DNA immunizations but increased dramatically after the MVA boost. Although the initial injection of MVA induced significant levels of vaccinia-neutralizing antibodies, the HIV-specific responses were still significantly boosted by the second MVA immunization. The results from this study demonstrate the potency of this combination of DNA plasmids and MVA construct to induce broad and high levels of immune responses against several HIV-1 proteins of different subtypes.


Vaccine | 2011

Amplified antigen-specific immune responses in HIV-1 infected individuals in a double blind DNA immunization and therapy interruption trial☆

Lindvi Gudmundsdotter; Britta Wahren; B.K. Haller; Andreas Boberg; U. Edbäck; D. Bernasconi; Stefano Buttò; Hans Gaines; Nesrina Imami; Frances Gotch; F. Lori; J. Lisziewicz; E. Sandström; Bo Hejdeman

Immunotherapy in patients with HIV-1 infection aims to restore and broaden immunological competence, reduce viral load and thereby permit longer periods without combined antiretroviral treatment (cART). Twelve HIV-1-infected patients on cART were immunized on the skin with DNA plasmids containing genes of several HIV-1 subtypes with or without the addition of hydroxyurea (HU), or with placebo. The mean net gain of HIV-specific CD8+ T cell responses were higher and broader in the HIV DNA vaccine groups compared to non-vaccinated individuals (p<0.05). The vaccine-induced immune responses per se had no direct effect on viral replication. In all patients combined, including placebo, the viral set point after a final structured therapy interruption (STI) was lower than prior to initiation of cART (p=0.003). Nadir CD4 levels appeared to strongly influence the post-STI viral titers. After the sixth immunization or placebo, patients could stay off cART for a median time of 15 months. The study shows that HIV DNA immunization induces broader and higher magnitudes of HIV-specific immune responses compared to structured therapy interruptions alone. Although compromised by small numbers of patients, the study also demonstrates that well-monitored STI may safely function as an immunological read out of HIV vaccine efficacy.


Scandinavian Journal of Immunology | 2007

Pre-clinical evaluation of a CEA DNA prime/protein boost vaccination strategy against colorectal cancer.

Kristian Hallermalm; Susanne Johansson; Andreas Bråve; M. Ek; Gunnel Engström; Andreas Boberg; Lindvi Gudmundsdotter; Pontus Blomberg; Håkan Mellstedt; Richard Stout; Margaret A. Liu; Britta Wahren

In preparation for a clinical trial in patients diagnosed with colorectal cancer, a vaccination strategy targeting the carcinoembryonic antigen (CEA) was evaluated in mice using a GMP‐produced plasmid DNA vaccine, CEA66, encoding a truncated form of the tumour‐associated antigen, CEA. The GMP‐produced CEA DNA vaccine was also evaluated for toxicity. Repeated intradermal administration of the GMP‐produced vaccine using a novel needle‐free jet injection device (Biojector) induced robust CD4 and CD8 T‐cell responses in mice, and did not result in any vaccine‐related toxicity. In a heterologous DNA prime/protein boost setting, cellular immune responses were of higher magnitude in animals primed with CEA66 DNA than in animals receiving repeated doses of recombinant CEA protein. These responses were further enhanced if recombinant murine granulocyte–macrophage colony‐stimulating factor was given as an adjuvant prior to vaccination. In contrast to repeated administration of recombinant CEA protein as a single modality vaccine, the heterologous CEA66 DNA prime/rCEA boost vaccination strategy resulted in a qualitatively broader immune response, and supports clinical testing of this vaccination regimen in humans.


Vaccine | 2011

Increased expression and immunogenicity of HIV-1 protease following inactivation of the enzymatic activity.

David Hallengärd; B. Kristian Haller; Sarah Petersson; Andreas Boberg; Anna-Karin Maltais; Maria G. Isaguliants; Britta Wahren; Andreas Bråve

HIV-1 protease is an important target for anti-HIV therapy but has not received much attention as a vaccine antigen. To investigate the immunogenic properties of HIV-1 protease, we designed DNA plasmids encoding variants of the protease gene. Mutations resulting in enzymatic inactivation (D25N) and resistance to standard antiretroviral drugs (V82F/I84V) were introduced in order to examine the impact of the enzymatic activity on immunogenicity and the possibility to induce immune responses against drug resistant protease, respectively. The enzymatic inactivation of protease resulted in significantly increased in vitro expression as well as in vivo immunogenicity. The inactivated protease was highly immunogenic in both BALB/c and HLA-A0201 transgenic C57Bl/6 mice, and the immunogenicity was retained when the gene was delivered as a part of a multigene HIV-1 DNA vaccine. The drug resistance mutations hampered both the cellular and humoral immune responses, as the mutations also affect both CD4 and CD8 T cell epitopes. Taken together, our data demonstrates the possibility to drastically increase the immunogenicity of HIV-1 protease.


Expert Review of Vaccines | 2008

Murine models for HIV vaccination and challenge

Andreas Boberg; Andreas Bråve; Susanne Johansson; Britta Wahren; Jorma Hinkula; Erik Rollman

HIV-1 only infects humans and chimpanzees. SIV or SHIV are, therefore, used as models for HIV in rhesus, cynomologus and pigtail macaques. Since conducting experiments in primate models does not fully mimic infection or vaccination against HIV-1 and is expensive, there is a great need for small-animal models in which it is possible to study HIV-1 infection, immunity and vaccine efficacy. This review summarizes the available murine models for studying HIV-1 infection with an emphasis on our experience of the HIV-1-infected-cell challenge as a model for evaluating candidate HIV-1 vaccines. In the cell-based challenge model, several important factors that, hopefully, can be related to vaccine efficacy in humans were discovered: the efficiency of combining plasmid DNA representing several of the viral genes originating from multiple clades of HIV-1, the importance of adjuvants activating innate and induced immunity and the enhanced HIV eradication by drug-conjugated antibody.


Vaccine | 2008

HIV-1 reverse transcriptase artificially targeted for proteasomal degradation induces a mixed Th1/Th2-type immune response

Elizaveta Starodubova; Andreas Boberg; Marina Litvina; Alexey V. Morozov; Natalia Petrakova; Andrey V. Timofeev; Oleg Latyshev; V. L. Tunitskaya; Britta Wahren; Maria G. Isaguliants; Vadim Karpov

Targeting of a DNA vaccine encoded protein for degradation via the proteasome is attempted since it may enhance the immunogenicity of the vaccine. We have fused HIV-1 reverse transcriptase (RT) to mouse ornithine decarboxylase (ODC), a protein rapidly degraded by proteasome in an ubiquitine-independent fashion, to enhance the introduction of RT into the MHC class I pathway. We also designed a fusion of RT with two short signals from the C-terminus of ODC (ODCsig) representing a minimal proteasome-targeting moiety of ODC (PEST signal). Fusion to ODC or ODC signal domain led to a marked enhancement of RT degradation. Plasmids encoding RT-ODC and RT-ODCsig chimera were used to immunize BALB/c mice. The administration of the plasmids was not associated with autoimmune disease. Moreover, mice receiving RT-ODCsig gene mounted a mixed Th1/Th2 response characterized by the in vitro secretion of IFN-gamma, IL-2, TNF-alpha, IL-4, and IL-10 upon stimulation of splenocytes with RT protein or RT derived peptides. Serum titers of 10(2) to 10(3) were observed in more than 50% of animals in that group, whereas fewer animals mounted an anti-RT response in the RT-ODC gene immunized group. Chimeras of the type described here can, therefore, be used in vaccinations aiming to induce HIV-1 RT-specific immune response.


Infectious Agents and Cancer | 2007

Immunization of mice with the nef gene from Human Immunodeficiency Virus type 1: Study of immunological memory and long-term toxicology

Andreas Bråve; Lindvi Gudmundsdotter; Georg Gasteiger; Kristian Hallermalm; Wolfgang Kastenmüller; Erik Rollman; Andreas Boberg; Gunnel Engström; Sven Reiland; Antonio Cosma; Ingo Drexler; Jorma Hinkula; Britta Wahren; Volker Erfle

BackgroundThe human immunodeficiency virus type 1 (HIV-1) regulatory protein, Nef, is an attractive vaccine target because it is involved in viral pathogenesis, is expressed early in the viral life cycle and harbors many T and B cell epitopes. Several clinical trials include gene-based vaccines encoding this protein. However, Nef has been shown to transform certain cell types in vitro. Based on these findings we performed a long-term toxicity and immunogenicity study of Nef, encoded either by Modified Vaccinia virus Ankara or by plasmid DNA. BALB/c mice were primed twice with either DNA or MVA encoding Nef and received a homologous or heterologous boost ten months later. In the meantime, the Nef-specific immune responses were monitored and at the time of sacrifice an extensive toxicological evaluation was performed, where presence of tumors and other pathological changes were assessed.ResultsThe toxicological evaluation showed that immunization with MVAnef is safe and does not cause cellular transformation or other toxicity in somatic organs.Both DNAnef and MVAnef immunized animals developed potent Nef-specific cellular responses that declined to undetectable levels over time, and could readily be boosted after almost one year. This is of particular interest since it shows that plasmid DNA vaccine can also be used as a potent late booster of primed immune responses. We observed qualitative differences between the T cell responses induced by the two different vectors: DNA-encoded nef induced long-lasting CD8+ T cell memory responses, whereas MVA-encoded nef induced CD4+ T cell memory responses. In terms of the humoral immune responses, we show that two injections of MVAnef induce significant anti-Nef titers, while repeated injections of DNAnef do not. A single boost with MVAnef could enhance the antibody response following DNAnef prime to the same level as that observed in animals immunized repeatedly with MVAnef. We also demonstrate the possibility to boost HIV-1 Nef-specific immune responses using the MVAnef construct despite the presence of potent anti-vector immunity.ConclusionThis study shows that the nef gene vectored by MVA does not induce malignancies or other adverse effects in mice. Further, we show that when the nef gene is delivered by plasmid or by a viral vector, it elicits potent and long-lasting immune responses and that these responses can be directed towards a CD4+ or a CD8+ T cell response depending on the choice of vector.The human immunodeficiency virus type 1 (HIV-1) regulatory protein, Nef, is an attractive vaccine target because it is involved in viral pathogenesis, is expressed early in the viral life cycle and harbors many T and B cell epitopes. Several clinical trials include gene-based vaccines encoding this protein. However, Nef has been shown to transform certain cell types in vitro. Based on these findings we performed a long-term toxicity and immunogenicity study of Nef, encoded either by Modified Vaccinia virus Ankara or by plasmid DNA. BALB/c mice were primed twice with either DNA or MVA encoding Nef and received a homologous or heterologous boost ten months later. In the meantime, the Nef-specific immune responses were monitored and at the time of sacrifice an extensive toxicological evaluation was performed, where presence of tumors and other pathological changes were assessed. The toxicological evaluation showed that immunization with MVAnef is safe and does not cause cellular transformation or other toxicity in somatic organs. Both DNAnef and MVAnef immunized animals developed potent Nef-specific cellular responses that declined to undetectable levels over time, and could readily be boosted after almost one year. This is of particular interest since it shows that plasmid DNA vaccine can also be used as a potent late booster of primed immune responses. We observed qualitative differences between the T cell responses induced by the two different vectors: DNA-encoded nef induced long-lasting CD8+ T cell memory responses, whereas MVA-encoded nef induced CD4+ T cell memory responses. In terms of the humoral immune responses, we show that two injections of MVAnef induce significant anti-Nef titers, while repeated injections of DNAnef do not. A single boost with MVAnef could enhance the antibody response following DNAnef prime to the same level as that observed in animals immunized repeatedly with MVAnef. We also demonstrate the possibility to boost HIV-1 Nef-specific immune responses using the MVAnef construct despite the presence of potent anti-vector immunity. This study shows that the nef gene vectored by MVA does not induce malignancies or other adverse effects in mice. Further, we show that when the nef gene is delivered by plasmid or by a viral vector, it elicits potent and long-lasting immune responses and that these responses can be directed towards a CD4+ or a CD8+ T cell response depending on the choice of vector.


Expert Review of Vaccines | 2008

Vaccination against drug resistance in HIV infection

Andreas Boberg; Maria G. Isaguliants

HIV-1 resistance to currently employed antiretroviral drugs and drug-associated adverse reactions and toxicity point to a need for additional measures to control HIV-1 replication in HIV-infected patients. The immune system of HIV-infected individuals mount an immune response against the regions harboring drug-resistance mutations, sometimes stronger than that against the parental wild-type sequences. A potent cross-reactive immune response against drug-resistant pol proteins can suppress the replication of drug-escaping HIV. This suggests the possibilty for a vaccination against existing and anticipated drug-resistant HIV variants. If successful, therapeutic vaccines against drug resistance would ease the therapeutic modalities and limit the spread of drug-resistant HIV. A better understanding of the complex interactions between patterns of drug-resistance mutations, immune responses against these mutations and their antigen presentation by particular human lymphocyte antigen alleles could help to tailor these vaccines after new drugs/new mutations. In this review, we describe the developments in the field of immunization against mutations conferring drug resistance and evaluate their prospects for human vaccination.


Vaccine | 2008

Enhancement of epitope-specific cellular immune responses by immunization with HIV-1 peptides genetically conjugated to the B-subunit of recombinant cholera toxin

Andreas Boberg; S. Gaunitz; Andreas Bråve; Britta Wahren; N. Carlin

As more HIV-1 infected patients receive anti-retroviral drug treatment, the occurrence of drug-resistant variants of the virus is increasing. We have previously shown that mutated HIV peptide sequences represent mutations induced by antiretroviral drugs are equally good and often better immunogens than wild type peptides. The non-toxic B subunit of cholera toxin (CTB) is an active substance in the oral cholera vaccine, and has been shown to bind ganglioside receptors and activate mucosal cells. By fusing mutant epitopes deriving from HIV-1 enzymes with the B subunit of cholera toxin, we aim is to induce cellular responses against virus harboring drug-induced mutations. We successfully created conjugates of HIV peptide sequences fused to rCTB. The immune response against the different peptides was strongly enhanced by the fusion to the toxin. Moreover, immunization with sequence containing drug-induced mutation triggered a cross-reactive immune response against the wild type epitope. Long-term follow-up of immunized animals revealed a persistence of cellular immune response for over 4 months, which could readily be boosted with an additional late immunization. By linking HIV-peptides to the B subunit of cholera toxin it is thus possible to stimulate a strong and long-lasting immune response, significantly better than that evoked by the peptide alone.


Vaccine | 2010

Potent cross-reactive immune response against the wild-type and drug-resistant forms of HIV reverse transcriptase after the chimeric gene immunization.

Elizaveta Starodubova; Andreas Boberg; A. V. Ivanov; Oleg Latyshev; Natalia Petrakova; Yulia Kuzmenko; Marina Litvina; Alexander Chernousov; S. N. Kochetkov; Vadim Karpov; Britta Wahren; Maria G. Isaguliants

HIV reverse transcriptase (RT) can be considered as a target and an instrument of immunotherapy aimed at limiting the emergence and spread of drug-resistant HIV. The chimeric genes coding for the wild-type and multi-drug-resistant RT (RT1.14) fused to lysosome-associated membrane protein 1 (LAMP-1) were injected intramuscularly into BALB/c mice. The immune response was assessed by ELISpot, cytokine ELISA intracellular IFN-gamma staining, and antibody ELISA. The genes for RT- and RT1.14-LAMP fusions (RT-LAMP and RT1.14-LAMP) were immunogenic generating a mixed Th1/Th2-profile of immune response, while the wild-type RT gene induced only weak immune response. Specific secretion of Th1-cytokines increased with increasing level of RT modification: RT<RT1.14 approximately RT-LAMP<RT1.14-LAMP. LAMP gene fusions generated a cross-reactive T-cell response against epitopes harboring drug-resistance mutations and their wild-type variants. Gene immunization induced specific IgG (10(3)), and transient serum IgA (10(2)). Low immunogenicity of the parental RT may be explained by tolerance to the enzyme that is a common endogenous retroviral antigen. Potent immune recognition of RT after immunization with chimeric RT genes indicates that this tolerance could be overcome. Immunization with mutant HIV genes may represent an immunotherapeutical supplement to antiretroviral treatment preventing the emergence of drug resistance.

Collaboration


Dive into the Andreas Boberg's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pontus Blomberg

Karolinska University Hospital

View shared research outputs
Top Co-Authors

Avatar

Karl Ljungberg

University of North Carolina at Chapel Hill

View shared research outputs
Researchain Logo
Decentralizing Knowledge