Andreas Boettcher
Novartis
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Andreas Boettcher.
Journal of Biomolecular Screening | 2006
Martin Klumpp; Andreas Boettcher; Damaris Becker; Gabriele Meder; Jutta Blank; Lukas Leder; Michael Forstner; Johannes Ottl; Lorenz M. Mayr
This article discusses the development of homogeneous, miniaturized assays for the identification of novel kinase inhibitors from very large compound collections. In particular, the suitability of time-resolved fluorescence resonance energy transfer (TR-RET) based on phospho-specific antibodies, an antibody-independent fluorescence polarization (FP) approach using metal-coated beads (IMAP™ technology), and the determination of adenosine triphosphate consumption through chemiluminescence is evaluated. These readouts are compared with regard to assay sensitivity, compound interference, reagent consumption, and performance in a 1536-well format, and practical considerations for their application in primary screening or in the identification of kinase substrates are discussed. All of the tested technologies were found to be suitable for miniaturized high-throughput screening (HTS) in principle, but each of them has distinct limitations and advantages. Therefore, the target-specific selection of the most appropriate readout technology is recommended to ensure maximal relevance of HTS campaigns.
Journal of Biomolecular Screening | 2010
Andreas Boettcher; Simon Ruedisser; P. Erbel; Daniela Vinzenz; Nikolaus Schiering; Ulrich Hassiepen; Pascal Rigollier; Lorenz M. Mayr; Julian Woelcke
Fragment-based screening (FBS) has gained acceptance in the pharmaceutical industry as an attractive approach for the identification of new chemical starting points for drug discovery programs in addition to classical strategies such as high-throughput screening. There is the concern that screening of fragments at high µM concentrations in biochemical assays results in increased false-positive and false-negative rates. Here the authors systematically compare the data quality of FBS obtained by enzyme activity-based fluorescence intensity, fluorescence lifetime, and mobility shift assays with the data quality from surface plasmon resonance (SPR) and nuclear magnetic resonance (NMR) methods. The serine protease trypsin and the matrix metalloprotease MMP12 were selected as model systems. For both studies, 352 fragments were selected each. From the data generated, all 3 biochemical protease assay methods can be used for screening of fragments with low false-negative and low false-positive rates, comparable to those achieved with the SPR-based assays. It can also be concluded that only fragments with a solubility higher than the screening concentration determined by means of NMR should be used for FBS purposes. Extrapolated to 10,000 fragments, the biochemical assays speed up the primary FBS process by approximately a factor of 10 and reduce the protease consumption by approximately 10,000-fold compared to NMR protein observation experiments.
Methods of Molecular Biology | 2009
Edgar Jacoby; Andreas Boettcher; Lorenz M. Mayr; Nathan Brown; Jeremy L. Jenkins; Joerg Kallen; Caroline Engeloch; Ulrich Schopfer; Pascal Furet; Keiichi Masuya; Joanna Lisztwan
Chemogenomics knowledge-based drug discovery approaches aim to extract the knowledge gained from one target and to apply it for the discovery of ligands and hopefully drugs of a new target which is related to the parent target by homology or conserved molecular recognition. Herein, we demonstrate the potential of knowledge-based virtual screening by applying it to the MDM4-p53 protein-protein interaction where the MDM2-p53 protein-protein interaction constitutes the parent reference system; both systems are potentially relevant to cancer therapy. We show that a combination of virtual screening methods, including homology based similarity searching, QSAR (Quantitative Structure-Activity Relationship) methods, HTD (High Throughput Docking), and UNITY pharmacophore searching provide a successful approach to the discovery of inhibitors. The virtual screening hit list is of the magnitude of 50,000 compounds picked from the corporate compound library of approximately 1.2 million compounds. Emphasis is placed on the facts that such campaigns are only feasible because of the now existing HTCP (High throughput Cherry-Picking) automation systems in combination with robust MTS (Medium Throughput Screening) fluorescence-based assays. Given that the MDM2-p53 system constitutes the reference system, it is not surprising that significantly more and stronger hits are found for this interaction compared to the MDM4-p53 system. Novel, selective and dual hits are discovered for both systems. A hit rate analysis will be provided compared to the full HTS (High-throughput Screening).
Journal of Biomolecular Screening | 2014
Andreas Boettcher; Nathalie Gradoux; Edwige Liliane Jeanne Lorthiois; Trixi Brandl; David Orain; Nikolaus Schiering; Frederic Cumin; Julian Woelcke; Ulrich Hassiepen
Fluorescence lifetime (FLT)–based assays have developed to become highly attractive tools in drug discovery. All recently published examples of FLT-based assays essentially describe their use for monitoring enzyme-mediated peptide modifications, such as proteolytic cleavage or phosphorylation/dephosphorylation. Here we report the development of competitive binding assays as novel, inhibitor-centric assays, principally employing the FLT of the acridone dye Puretime 14 (PT14) as the readout parameter. Exemplified with two case studies on human serine proteases, the details of the rationale for both the design and synthesis of probes (i.e., active site–directed low-molecular-weight inhibitors conjugated to PT14) are provided. Data obtained from testing inhibitors with the novel assay format match those obtained with alternative formats such as FLT-based protease activity and time-resolved fluorescence resonance energy transfer–based competitive binding assays.
PLOS ONE | 2013
Abhiruchi Agarwal; Andreas Boettcher; Rainer Kneuer; Farid Sari-Sarraf; Adriana Donovan; Julian Woelcke; Oliver Simic; Trixi Brandl; Thomas Krucker
Background and Aims Endoprotease activation is a key step in acute pancreatitis and early inhibition of these enzymes may protect from organ damage. In vivo models commonly used to evaluate protease inhibitors require animal sacrifice and therefore limit the assessment of dynamic processes. Here, we established a non-invasive fluorescence imaging-based biomarker assay to assess real-time protease inhibition and disease progression in a preclinical model of experimental pancreatitis. Methods Edema development and trypsin activation were imaged in a rat caerulein-injection pancreatitis model. A fluorescent “smart” probe, selectively activated by trypsin, was synthesized by labeling with Cy5.5 of a pegylated poly-L-lysine copolymer. Following injection of the probe, trypsin activation was monitored in the presence or absence of inhibitors by in vivo and ex vivo imaging. Results We established the trypsin-selectivity of the fluorescent probe in vitro using a panel of endopeptidases and specific inhibitor. In vivo, the probe accumulated in the liver and a region attributed to the pancreas by necropsy. A dose dependent decrease of total pancreatic fluorescence signal occurred upon administration of known trypsin inhibitors. The fluorescence-based method was a better predictor of trypsin inhibition than pancreatic to body weight ratio. Conclusions We established a fluorescence imaging assay to access trypsin inhibition in real-time in vivo. This method is more sensitive and dynamic than classic tissue sample readouts and could be applied to preclinically optimize trypsin inhibitors towards intrapancreatic target inhibition.
Archive | 1987
Andreas Boettcher; Bernd Dr. Chem. Bronstert; Gerhard Dr. Chem. Hoffmann
Archive | 2008
Andreas Boettcher; Nicole Buschmann; Pascal Furet; Jean-Marc Groell; Joerg Kallen; Joanna Lisztwan; Keiichi Masuya; Lorenz M. Mayr; Andrea Vaupel
Archive | 1987
Andreas Boettcher; Bernd Bronstert; Gerhard Hoffmann
Archive | 1987
Andreas Boettcher; Bernd Bronstert; Gerhard Hoffmann
Archive | 1986
Andreas Boettcher; Bernd Bronstert; Gerhard Hoffmann