Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andreas Bohn is active.

Publication


Featured researches published by Andreas Bohn.


Water Research | 2008

Cultured phototrophic biofilms for phosphorus removal in wastewater treatment

Antonella Guzzon; Andreas Bohn; Marco Diociaiuti; Patrizia Albertano

Culture experiments with phototrophic biofilms taken from the sedimentation tank of the wastewater treatment plant at the Fiumicino Airport in Rome, Italy were carried out in a prototype continuous flow incubator. Biofilms grown at varying photosynthetic photon flux density (PPFD), temperature and flow velocity were sampled at three developmental stages to quantify biofilm dry weight, chlorophyll a concentration and total cellular phosphorus content. While no coherent significant effects by flow and temperature were evidenced, maximum biofilm dry weight and phosphorous concentration significantly increased across all featured PPFDs. Maximum chlorophyll a concentration was saturated above 60 micromol m(-2)s(-1). A highly significant association between organic biomass and phosphorous content was observed for most light conditions, including a larger proportional increase of phosphorus concentration with respect to chlorophyll a at high PPFD. Up to 112 mg P m(-2)d(-1) maximal phosphorous removal rates were achieved. Elemental analysis by energy filtering transmission electron microscopy showed subcellular localization of phosphorus, confirming the accumulation in phototrophic microorganisms in biofilms grown in high light conditions.


Applied and Environmental Microbiology | 2011

Engineering Trehalose Synthesis in Lactococcus lactis for Improved Stress Tolerance

Ana Lúcia Carvalho; Filipa S. Cardoso; Andreas Bohn; Ana Rute Neves; Helena Santos

ABSTRACT Trehalose accumulation is a common cell defense strategy against a variety of stressful conditions. In particular, our team detected high levels of trehalose in Propionibacterium freudenreichii in response to acid stress, a result that led to the idea that endowing Lactococcus lactis with the capacity to synthesize trehalose could improve the acid tolerance of this organism. To this end, we took advantage of the endogenous genes involved in the trehalose catabolic pathway of L. lactis, i.e., trePP and pgmB, encoding trehalose 6-phosphate phosphorylase and β-phosphoglucomutase, respectively, which enabled the synthesis of trehalose 6-phosphate. Given that L. lactis lacks trehalose 6-phosphate phosphatase, the respective gene, otsB, from the food-grade organism P. freudenreichii was used to provide the required activity. The trehalose yield was approximately 15% in resting cells and in mid-exponential-phase cells grown without pH control. The intracellular concentration of trehalose reached maximal values of approximately 170 mM, but at least 67% of the trehalose produced was found in the growth medium. The viability of mutant and control strains was examined after exposure to heat, cold or acid shock, and freeze-drying. The trehalose-producing strains showed improved tolerance (5- to 10-fold-higher survivability) to acid (pH 3) and cold shock (4°C); there was also a strong improvement in cell survival in response to heat shock (45°C), and no protection was rendered against dehydration. The insight provided by this work may help the design of food-grade strains optimized for the dairy industry as well as for oral drug delivery.


Biofouling | 2009

Capsular polysaccharides of cultured phototrophic biofilms.

F. Di Pippo; Andreas Bohn; Roberta Congestri; R. De Philippis; Patrizia Albertano

Phototrophic biofilm samples from an Italian wastewater treatment plant were studied in microcosm experiments under varying irradiances, temperatures and flow regimes to assess the effects of environmental variables and phototrophic biomass on capsular exopolysaccharides (CPS). The results, obtained from circular dichroism spectroscopy and High Performance Liquid Chromatography, suggest that CPS have a stable spatial conformation and a complex monosaccharide composition. The total amount present was positively correlated with the biomass of cyanobacteria and diatoms, and negatively with the biovolume of green algae. The proportion of uronic acids showed the same correlation with these taxon groups, indicating a potential role of cyanobacteria and diatoms in the removal of residual nutrients and noxious cations in wastewater treatment. While overall biofilm growth was limited by low irradiance, high temperature (30°C) and low flow velocity (25 l h−1) yielded the highest phototrophic biomass, the largest amount of CPS produced, and the highest proportion of carboxylic acids present.


Microbiology | 2012

The aerobic respiratory chain of Escherichia coli: from genes to supercomplexes

Pedro M.F. Sousa; Marco A.M. Videira; Andreas Bohn; Brian L. Hood; Thomas P. Conrads; Luís F. Goulão; Ana M.P. Melo

In spite of the large number of reports on the aerobic respiratory chain of Escherichia coli, from gene transcription regulation to enzyme kinetics and structural studies, an integrative perspective of this pathway is yet to be produced. Here, a multi-level analysis of the aerobic respiratory chain of E. coli was performed to find correlations between gene transcription, enzyme activity, growth dynamics, and supercomplex formation and composition. The transcription level of all genes encoding the aerobic respiratory chain of E. coli varied significantly in response to bacterial growth. Coordinated expression patterns were observed between the genes encoding NADHu200a:u200aquinone oxidoreductase and complex I (NDH-1), alternative NADHu200a:u200aquinone oxidoreductase (NDH-2) and cytochrome bdI, and also between sdhA and appC, encoding succinate dehydrogenase and cytochrome bdII, respectively. In general, the rates of the respiratory chain activities increased from mid-exponential to late-stationary phase, with no significant further variation occurring until the mid-stationary phase. Multi-level correlations between gene transcription, enzyme activity and growth dynamics were also found in this study. The previously reported NADH dehydrogenase and formateu200a:u200aoxygen oxidoreductase supercomplexes of E. coli were already assembled at mid-exponential phase and remained throughout growth. A new succinate oxidase supercomplex composed of succinate dehydrogenase and cytochrome bdII was identified, in agreement with the suggestion provided by the coordinated transcription of sdhA and appC.


BMC Genomics | 2014

A comprehensive assessment of the transcriptome of cork oak (Quercus suber) through EST sequencing

José B. Pereira-Leal; Isabel A. Abreu; Cláudia S Alabaça; Maria Helena Almeida; Paulo Almeida; Tânia Almeida; Maria Isabel Amorim; Susana Araújo; Herlânder Azevedo; Aleix Badia; Dora Batista; Andreas Bohn; Tiago Capote; Isabel Carrasquinho; Inês Chaves; Ana Cristina Coelho; Maria Manuela Ribeiro Costa; Rita Costa; Alfredo Cravador; Conceição Egas; Carlos Faro; Ana Margarida Fortes; Ana S. Fortunato; Maria João Gaspar; Sónia Gonçalves; José Graça; Marília Horta; Vera Inácio; José Leitão; Teresa Lino-Neto

BackgroundCork oak (Quercus suber) is one of the rare trees with the ability to produce cork, a material widely used to make wine bottle stoppers, flooring and insulation materials, among many other uses. The molecular mechanisms of cork formation are still poorly understood, in great part due to the difficulty in studying a species with a long life-cycle and for which there is scarce molecular/genomic information. Cork oak forests are of great ecological importance and represent a major economic and social resource in Southern Europe and Northern Africa. However, global warming is threatening the cork oak forests by imposing thermal, hydric and many types of novel biotic stresses. Despite the economic and social value of the Q. suber species, few genomic resources have been developed, useful for biotechnological applications and improved forest management.ResultsWe generated in excess of 7 million sequence reads, by pyrosequencing 21 normalized cDNA libraries derived from multiple Q. suber tissues and organs, developmental stages and physiological conditions. We deployed a stringent sequence processing and assembly pipeline that resulted in the identification of ~159,000 unigenes. These were annotated according to their similarity to known plant genes, to known Interpro domains, GO classes and E.C. numbers. The phylogenetic extent of this ESTs set was investigated, and we found that cork oak revealed a significant new gene space that is not covered by other model species or EST sequencing projects. The raw data, as well as the full annotated assembly, are now available to the community in a dedicated web portal at http://www.corkoakdb.org.ConclusionsThis genomic resource represents the first trancriptome study in a cork producing species. It can be explored to develop new tools and approaches to understand stress responses and developmental processes in forest trees, as well as the molecular cascades underlying cork differentiation and disease response.


Biofouling | 2011

1H-NMR analysis of water mobility in cultured phototrophic biofilms

F. Di Pippo; Andreas Bohn; Francesca Cavalieri; Patrizia Albertano

The present work reports on the first attempt to study water mobility in phototrophic biofilms, applying the 1H-NMR relaxometry technique to closely monitored microbial communities grown in a microcosm under controlled ambient conditions. Longitudinal water proton relaxation times exhibited a bi-exponential behavior in all biofilm samples, indicating two types of water molecules with diverging dynamic properties, confined to different compartments of the biofilm. The fast-relaxing component can be attributed to water molecules tightly bound to the intracellular matrix, while the slow-relaxing component could reflect the behavior of water embedded in the biopolymer matrix, confined into matrix pores and channels. The results are discussed with respect to a possible key role of exopolysaccharides and uronic acids in water binding in phototrophic biofilms.


European Journal of Phycology | 2014

Diversity and biomass accumulation in cultured phototrophic biofilms

Francesca Di Pippo; Neil Thomas William Ellwood; Antonella Guzzon; Andreas Bohn; Roberta Congestri

In the present study, biomass development and changes in community composition of phototrophic biofilms grown under different controlled ambient conditions (light, temperature and flow) were examined. Source communities were taken from a wastewater treatment plant and used to inoculate growth surfaces in a semi-continuous-flow microcosm. We recorded biofilm growth curves in cultures over a period of 30 days across 12 experiments. Biovolume of phototrophs and community composition for taxonomic shifts were also obtained using light and electron microscopy. Species richness in the cultured biofilms was greatly reduced with respect to the natural samples, and diversity decreased even further during biofilm development. Diadesmis confervacea, Phormidium spp., Scenedesmus spp. and Synechocystis spp. were identified as key taxa in the microcosm. While a significant positive effect of irradiance on biofilm growth could be identified, impacts of temperature and flow rate on biofilm development and diversity were less evident. We discuss the hypothesis that biofilm development could have been subject to multistability, i.e. the existence of several possible stable biofilm configurations for the same set of environmental parameters; small variations in the species composition might have been sufficient to switch between these different configurations and thus have contributed to overwriting the original effects of temperature and flow velocity.


Physiology & Behavior | 2012

Daily rhythms of native Brazilians in summer and winter.

Daniela Wey; Andreas Bohn; Luiz Menna-Barreto

Access to electricity, granting relative independence of human activity on the dark phase of the day, has been pointed out as an important cause for the absence of seasonal changes in the daily rhythms of humans living in urban areas. Featuring a population of adult Guarani natives living without access to electricity, the present naturalistic study was designed to explore possible effects of different natural photoperiods and temperature on human circadian rhythms. We compared time series of wrist temperature (WT) and motor activity in winter and summer, respectively, of 24 individuals aged 18 to 80. Twenty-four-hour rhythms of WT showed lower amplitudes and higher mean levels in summer, with no significant seasonal differences in acrophase. In contrast, rest-activity (RA) rhythms exhibited a significantly later rest on- and offset in summer, but no seasonal changes in duration, amplitude and mean level. We furthermore identified a phase advance of both the WT acrophase and rest onset with increasing age of the individuals. We concluded that in our study the effect of different seasons was reflected in the amplitude and mean level of the WT rhythm, as well the onset of nighttime rest, which was delayed in summer.


FEBS Letters | 2017

miRPursuit—a pipeline for automated analyses of small RNAs in model and nonmodel plants

Inês Chaves; Bruno Costa; Andreia S. Rodrigues; Andreas Bohn; Célia Miguel

miRPursuit is a pipeline developed for running end‐to‐end analyses of high‐throughput small RNA (sRNA) sequence data in model and nonmodel plants, from raw data to identified and annotated conserved and novel sequences. It consists of a series of UNIX shell scripts, which connect open‐source sRNA analysis software. The involved parameters can be combined with convenient workflow management by users without advanced computational skills. miRPursuit presents several advantages when compared to other tools, including the possibility of processing several sRNA libraries in parallel, thus easily allowing a comparison of the differences in sRNA read accumulation among sRNA libraries. We validate miRPursuit by using datasets from a model plant and discuss its performance with the analysis of sRNAs from non‐model species.


Biological Rhythm Research | 2006

Delay model of circadian gene expression with two negative feedback loops

Andreas Bohn; José Reinaldo de Lima Lopes; L. Diambra; Luiz Menna-Barreto

Abstract In this theoretical paper we propose a quantitative minimal model for circadian gene expression based on two negative feedback loops. We perform numerical simulations to analyse its dynamics and parameter sensitivities in free-running conditions, and verify the entrainability by a single periodic driver. We furthermore apply two simultaneously acting external drivers, leading to aperiodic oscillations in the case of a single-loop system. These can be turned into regular periodic oscillations by introduction of a second loop. Our studies confirm the increasing evidence that multiple feedback loops increase the robustness of regulatory systems, and stress the particular situation of systems that are close to transition from free-running oscillation to steady-state behaviour. We discuss possible molecular realisations of the featured feedback loops and suggest the application of complex patterns of external stimulation as a generally useful approach to assess the functionality of models of circadian systems.

Collaboration


Dive into the Andreas Bohn's collaboration.

Top Co-Authors

Avatar

Patrizia Albertano

University of Rome Tor Vergata

View shared research outputs
Top Co-Authors

Avatar

Inês Chaves

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Antonella Guzzon

University of Rome Tor Vergata

View shared research outputs
Top Co-Authors

Avatar

F. Di Pippo

University of Rome Tor Vergata

View shared research outputs
Top Co-Authors

Avatar

Roberta Congestri

University of Rome Tor Vergata

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge