Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andreas Bremges is active.

Publication


Featured researches published by Andreas Bremges.


Nature Methods | 2017

Critical assessment of metagenome interpretation − a benchmark of computational metagenomics software

Alexander Sczyrba; Peter Hofmann; Peter Belmann; David Koslicki; Stefan Janssen; Johannes Droege; Ivan Gregor; Stephan Majda; Jessika Fiedler; Eik Dahms; Andreas Bremges; Adrian Fritz; Ruben Garrido-Oter; Tue Sparholt Jørgensen; Nicole Shapiro; Philip D. Blood; Alexey Gurevich; Yang Bai; Dmitrij Turaev; Matthew Z. DeMaere; Rayan Chikhi; Niranjan Nagarajan; Christopher Quince; Fernando Meyer; Monika Balvociute; Lars Hestbjerg Hansen; Søren J. Sørensen; Burton K H Chia; Bertrand Denis; Jeff Froula

Methods for assembly, taxonomic profiling and binning are key to interpreting metagenome data, but a lack of consensus about benchmarking complicates performance assessment. The Critical Assessment of Metagenome Interpretation (CAMI) challenge has engaged the global developer community to benchmark their programs on highly complex and realistic data sets, generated from ∼700 newly sequenced microorganisms and ∼600 novel viruses and plasmids and representing common experimental setups. Assembly and genome binning programs performed well for species represented by individual genomes but were substantially affected by the presence of related strains. Taxonomic profiling and binning programs were proficient at high taxonomic ranks, with a notable performance decrease below family level. Parameter settings markedly affected performance, underscoring their importance for program reproducibility. The CAMI results highlight current challenges but also provide a roadmap for software selection to answer specific research questions.


GigaScience | 2015

Bioboxes: standardised containers for interchangeable bioinformatics software

Peter Belmann; Johannes Dröge; Andreas Bremges; Alice C. McHardy; Alexander Sczyrba; Michael Barton

Software is now both central and essential to modern biology, yet lack of availability, difficult installations, and complex user interfaces make software hard to obtain and use. Containerisation, as exemplified by the Docker platform, has the potential to solve the problems associated with sharing software. We propose bioboxes: containers with standardised interfaces to make bioinformatics software interchangeable.


Nature Methods | 2017

Critical Assessment of Metagenome Interpretation — a benchmark of metagenomics software

Alexander Sczyrba; Peter Hofmann; Peter Belmann; David Koslicki; Stefan Janssen; Johannes Dröge; Ivan Gregor; Stephan Majda; Jessika Fiedler; Eik Dahms; Andreas Bremges; Adrian Fritz; Ruben Garrido-Oter; Tue Sparholt Jørgensen; Nicole Shapiro; Philip D. Blood; Alexey Gurevich; Yang Bai; Dmitrij Turaev; Matthew Z. DeMaere; Rayan Chikhi; Niranjan Nagarajan; Christopher Quince; Fernando Meyer; Monika Balvočiūtė; Lars Hestbjerg Hansen; Søren J. Sørensen; Burton K H Chia; Bertrand Denis; Jeff Froula

Methods for assembly, taxonomic profiling and binning are key to interpreting metagenome data, but a lack of consensus about benchmarking complicates performance assessment. The Critical Assessment of Metagenome Interpretation (CAMI) challenge has engaged the global developer community to benchmark their programs on highly complex and realistic data sets, generated from ∼700 newly sequenced microorganisms and ∼600 novel viruses and plasmids and representing common experimental setups. Assembly and genome binning programs performed well for species represented by individual genomes but were substantially affected by the presence of related strains. Taxonomic profiling and binning programs were proficient at high taxonomic ranks, with a notable performance decrease below family level. Parameter settings markedly affected performance, underscoring their importance for program reproducibility. The CAMI results highlight current challenges but also provide a roadmap for software selection to answer specific research questions.


bioRxiv | 2016

From Genomes to Phenotypes: Traitar, the Microbial Trait Analyzer

Aaron Weimann; Kyra Mooren; Jeremy Frank; Phillip B. Pope; Andreas Bremges; Alice C. McHardy

Bacteria are ubiquitous in our ecosystem and have a major impact on human health, e.g., by supporting digestion in the human gut. Bacterial communities can also aid in biotechnological processes such as wastewater treatment or decontamination of polluted soils. Diverse bacteria contribute with their unique capabilities to the functioning of such ecosystems, but lab experiments to investigate those capabilities are labor-intensive. Major advances in sequencing techniques open up the opportunity to study bacteria by their genome sequences. For this purpose, we have developed Traitar, software that predicts traits of bacteria on the basis of their genomes. It is applicable to studies with tens or hundreds of bacterial genomes. Traitar may help researchers in microbiology to pinpoint the traits of interest, reducing the amount of wet lab work required. ABSTRACT The number of sequenced genomes is growing exponentially, profoundly shifting the bottleneck from data generation to genome interpretation. Traits are often used to characterize and distinguish bacteria and are likely a driving factor in microbial community composition, yet little is known about the traits of most microbes. We describe Traitar, the microbial trait analyzer, which is a fully automated software package for deriving phenotypes from a genome sequence. Traitar provides phenotype classifiers to predict 67 traits related to the use of various substrates as carbon and energy sources, oxygen requirement, morphology, antibiotic susceptibility, proteolysis, and enzymatic activities. Furthermore, it suggests protein families associated with the presence of particular phenotypes. Our method uses L1-regularized L2-loss support vector machines for phenotype assignments based on phyletic patterns of protein families and their evolutionary histories across a diverse set of microbial species. We demonstrate reliable phenotype assignment for Traitar to bacterial genomes from 572 species of eight phyla, also based on incomplete single-cell genomes and simulated draft genomes. We also showcase its application in metagenomics by verifying and complementing a manual metabolic reconstruction of two novel Clostridiales species based on draft genomes recovered from commercial biogas reactors. Traitar is available at https://github.com/hzi-bifo/traitar . IMPORTANCE Bacteria are ubiquitous in our ecosystem and have a major impact on human health, e.g., by supporting digestion in the human gut. Bacterial communities can also aid in biotechnological processes such as wastewater treatment or decontamination of polluted soils. Diverse bacteria contribute with their unique capabilities to the functioning of such ecosystems, but lab experiments to investigate those capabilities are labor-intensive. Major advances in sequencing techniques open up the opportunity to study bacteria by their genome sequences. For this purpose, we have developed Traitar, software that predicts traits of bacteria on the basis of their genomes. It is applicable to studies with tens or hundreds of bacterial genomes. Traitar may help researchers in microbiology to pinpoint the traits of interest, reducing the amount of wet lab work required.


Journal of Biotechnology | 2016

Genomic characterization of Defluviitoga tunisiensis L3, a key hydrolytic bacterium in a thermophilic biogas plant and its abundance as determined by metagenome fragment recruitment

Irena Maus; Katharina Gabriela Cibis; Andreas Bremges; Yvonne Stolze; Daniel Wibberg; Geizecler Tomazetto; Jochen Blom; Alexander Sczyrba; Helmut König; Alfred Pühler; Andreas Schlüter

The genome sequence of Defluviitoga tunisiensis L3 originating from a thermophilic biogas-production plant was established and recently published as Genome Announcement by our group. The circular chromosome of D. tunisiensis L3 has a size of 2,053,097bp and a mean GC content of 31.38%. To analyze the D. tunisiensis L3 genome sequence in more detail, a phylogenetic analysis of completely sequenced Thermotogae strains based on shared core genes was performed. It appeared that Petrotoga mobilis DSM 10674(T), originally isolated from a North Sea oil-production well, is the closest relative of D. tunisiensis L3. Comparative genome analyses of P. mobilis DSM 10674(T) and D. tunisiensis L3 showed moderate similarities regarding occurrence of orthologous genes. Both genomes share a common set of 1351 core genes. Reconstruction of metabolic pathways important for the biogas production process revealed that the D. tunisiensis L3 genome encodes a large set of genes predicted to facilitate utilization of a variety of complex polysaccharides including cellulose, chitin and xylan. Ethanol, acetate, hydrogen (H2) and carbon dioxide (CO2) were found as possible end-products of the fermentation process. The latter three metabolites are considered to represent substrates for methanogenic Archaea, the key organisms in the final step of the anaerobic digestion process. To determine the degree of relatedness between D. tunisiensis L3 and dominant biogas community members within the thermophilic biogas-production plant, metagenome sequences obtained from the corresponding microbial community were mapped onto the L3 genome sequence. This fragment recruitment revealed that the D. tunisiensis L3 genome is almost completely covered with metagenome sequences featuring high matching accuracy. This result indicates that strains highly related or even identical to the reference strain D. tunisiensis L3 play a dominant role within the community of the thermophilic biogas-production plant.


Journal of Biotechnology | 2014

Complete genome sequence of the cyanide-degrading bacterium Pseudomonas pseudoalcaligenes CECT5344

Daniel Wibberg; Víctor M. Luque-Almagro; Mª Isabel Igeño; Andreas Bremges; M.D. Roldán; Faustino Merchán; Lara P. Sáez; Mª Isabel Guijo; Mª Isabel Manso; Daniel Macías; Purificación Cabello; Gracia Becerra; Mª Isabel Ibáñez; Mª Isabel Carmona; Mª María Paz Escribano; Francisco Castillo; Alexander Sczyrba; Conrado Moreno-Vivián; Rafael Blasco; Alfred Pühler; Andreas Schlüter

Pseudomonas pseudoalcaligenes CECT5344, a Gram-negative bacterium isolated from the Guadalquir River (Córdoba, Spain), is able to utilize different cyano-derivatives. Here, the complete genome sequence of P. pseudoalcaligenes CECT5344 harboring a 4,686,340bp circular chromosome encoding 4513 genes and featuring a GC-content of 62.34% is reported. Necessarily, remaining gaps in the genome had to be closed by assembly of few long reads obtained from PacBio single molecule real-time sequencing. Here, the first complete genome sequence for the species P. pseudoalcaligenes is presented.


Proteomics | 2015

Fractionation of biogas plant sludge material improves metaproteomic characterization to investigate metabolic activity of microbial communities

Fabian Kohrs; Sophie Wolter; Dirk Benndorf; Robert Heyer; Marcus Hoffmann; Erdmann Rapp; Andreas Bremges; Alexander Sczyrba; Andreas Schlüter; Udo Reichl

With the development of high resolving mass spectrometers, metaproteomics evolved as a powerful tool to elucidate metabolic activity of microbial communities derived from full‐scale biogas plants. Due to the vast complexity of these microbiomes, application of suitable fractionation methods are indispensable, but often turn out to be time and cost intense, depending on the method used for protein separation. In this study, centrifugal fractionation has been applied for fractionation of two biogas sludge samples to analyze proteins extracted from (i) crude fibers, (ii) suspended microorganisms, and (iii) secreted proteins in the supernatant using a gel‐based approach followed by LC‐MS/MS identification. This fast and easy method turned out to be beneficial to both the quality of SDS‐PAGE and the identification of peptides and proteins compared to untreated samples. Additionally, a high functional metabolic pathway coverage was achieved by combining protein hits found exclusively in distinct fractions. Sample preparation using centrifugal fractionation influenced significantly the number and the types of proteins identified in the microbial metaproteomes. Thereby, comparing results from different proteomic or genomic studies, the impact of sample preparation should be considered. All MS data have been deposited in the ProteomeXchange with identifier PXD001508 (http://proteomecentral.proteomexchange.org/dataset/PXD001508).


Journal of Biotechnology | 2016

An integrated metagenome and -proteome analysis of the microbial community residing in a biogas production plant

Vera Ortseifen; Yvonne Stolze; Irena Maus; Alexander Sczyrba; Andreas Bremges; Stefan P. Albaum; Sebastian Jaenicke; Jochen Fracowiak; Alfred Pühler; Andreas Schlüter

To study the metaproteome of a biogas-producing microbial community, fermentation samples were taken from an agricultural biogas plant for microbial cell and protein extraction and corresponding metagenome analyses. Based on metagenome sequence data, taxonomic community profiling was performed to elucidate the composition of bacterial and archaeal sub-communities. The communitys cytosolic metaproteome was represented in a 2D-PAGE approach. Metaproteome databases for protein identification were compiled based on the assembled metagenome sequence dataset for the biogas plant analyzed and non-corresponding biogas metagenomes. Protein identification results revealed that the corresponding biogas protein database facilitated the highest identification rate followed by other biogas-specific databases, whereas common public databases yielded insufficient identification rates. Proteins of the biogas microbiome identified as highly abundant were assigned to the pathways involved in methanogenesis, transport and carbon metabolism. Moreover, the integrated metagenome/-proteome approach enabled the examination of genetic-context information for genes encoding identified proteins by studying neighboring genes on the corresponding contig. Exemplarily, this approach led to the identification of a Methanoculleus sp. contig encoding 16 methanogenesis-related gene products, three of which were also detected as abundant proteins within the communitys metaproteome. Thus, metagenome contigs provide additional information on the genetic environment of identified abundant proteins.


Journal of Biotechnology | 2016

Finished genome sequence and methylome of the cyanide-degrading Pseudomonas pseudoalcaligenes strain CECT5344 as resolved by single-molecule real-time sequencing.

Daniel Wibberg; Andreas Bremges; Tanja Dammann-Kalinowski; Irena Maus; María Isabel Igeño; Ralph Vogelsang; Christoph König; Víctor M. Luque-Almagro; María Dolores Roldán; Alexander Sczyrba; Conrado Moreno-Vivián; Rafael Blasco; Alfred Pühler; Andreas Schlüter

Pseudomonas pseudoalcaligenes CECT5344 tolerates cyanide and is also able to utilize cyanide and cyano-derivatives as a nitrogen source under alkaline conditions. The strain is considered as candidate for bioremediation of habitats contaminated with cyanide-containing liquid wastes. Information on the genome sequence of the strain CECT5344 became available previously. The P. pseudoalcaligenes CECT5344 genome was now resequenced by applying the single molecule, real-time (SMRT(®)) sequencing technique developed by Pacific Biosciences. The complete and finished genome sequence of the strain consists of a 4,696,984 bp chromosome featuring a GC-content of 62.34%. Comparative analyses between the new and previous versions of the P. pseudoalcaligenes CECT5344 genome sequence revealed additional regions in the new sequence that were missed in the older version. These additional regions mostly represent mobile genetic elements. Moreover, five additional genes predicted to play a role in sulfoxide reduction are present in the newly established genome sequence. The P. pseudoalcaligenes CECT5344 genome sequence is highly related to the genome sequences of different Pseudomonas mendocina strains. Approximately, 70% of all genes are shared between P. pseudoalcaligenes and P. mendocina. In contrast to P. mendocina, putative pathogenicity genes were not identified in the P. pseudoalcaligenes CECT5344 genome. P. pseudoalcaligenes CECT5344 possesses unique genes for nitrilases and mercury resistance proteins that are of importance for survival in habitats contaminated with cyano- and mercury compounds. As an additional feature of the SMRT sequencing technology, the methylome of P. pseudoalcaligenes was established. Six sequence motifs featuring methylated adenine residues (m6A) were identified in the genome. The genome encodes several methyltransferases, some of which may be considered for methylation of the m6A motifs identified. The complete genome sequence of the strain CECT5344 now provides the basis for exploitation of genetic features for biotechnological purposes.


Archive | 2017

Metagenomics and CAZyme Discovery

Benoit J. Kunath; Andreas Bremges; Aaron Weimann; Alice C. McHardy; Phillip B. Pope

Microorganisms play a primary role in regulating biogeochemical cycles and are a valuable source of enzymes that have biotechnological applications, such as carbohydrate-active enzymes (CAZymes). However, the inability to culture the majority of microorganisms that exist in natural ecosystems using common culture-dependent techniques restricts access to potentially novel cellulolytic bacteria and beneficial enzymes. The development of molecular-based culture-independent methods such as metagenomics enables researchers to study microbial communities directly from environmental samples, and presents a platform from which enzymes of interest can be sourced. We outline key methodological stages that are required as well as describe specific protocols that are currently used for metagenomic projects dedicated to CAZyme discovery.

Collaboration


Dive into the Andreas Bremges's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peter Hofmann

University of Düsseldorf

View shared research outputs
Researchain Logo
Decentralizing Knowledge