Andreas E. Vasdekis
École Polytechnique Fédérale de Lausanne
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Andreas E. Vasdekis.
Applied Physics Letters | 2009
Wuzhou Song; Andreas E. Vasdekis; Zhenyu Li; Demetri Psaltis
We demonstrate an optofluidic evanescent laser based on a solid circular distributed feedback grating with the dye solution acting as the cladding layer. The laser mode is confined within the grating and experiences optical gain via the interaction between its evanescent component with the dye solution. Above a pump energy of 9.5 µJ/pulse, the laser exhibited single mode operation at 571 nm. Stable, narrow-linewidth emission was observed for a wide range of fluid refractive indices, even for those lower than of polydimethylsiloxane. We attribute this property to the evanescent coupling of the laser mode with the fluidic gain
Applied Physics Letters | 2009
Wuzhou Song; Andreas E. Vasdekis; Zhenyu Li; Demetri Psaltis
We report the demonstration of low order distributed feedback (DFB) optofluidic dye lasers with reduced threshold. The laser chips were realized in polydimethylsiloxane using replica molding with two masters. A comparison between first, second, and third order DFB dye lasers was performed, while the second order DFB dye laser exhibited the lowest pump threshold of 78 nJ/pulse. Compared to previous reports on higher order Bragg grating structures, the pump threshold in this work is approximately 30-fold lower than the state of the art due to the reduction in the cavity losses and the more efficient pumping configuration.
Bioconjugate Chemistry | 2015
Jay W. Grate; Kai-For Mo; Yongsoon Shin; Andreas E. Vasdekis; Marvin G. Warner; Ryan T. Kelly; Galya Orr; Dehong Hu; Karl J. Dehoff; Fred J. Brockman; Michael J. Wilkins
Methods to covalently conjugate Alexa Fluor dyes to cellulose nanocrystals, at limiting amounts that retain the overall structure of the nanocrystals as model cellulose materials, were developed using two approaches. In the first, aldehyde groups are created on the cellulose surfaces by reaction with limiting amounts of sodium periodate, a reaction well-known for oxidizing vicinal diols to create dialdehyde structures. Reductive amination reactions were then applied to bind Alexa Fluor dyes with terminal amino-groups on the linker section. In the absence of the reductive step, dye washes out of the nanocrystal suspension, whereas with the reductive step, a colored product is obtained with the characteristic spectral bands of the conjugated dye. In the second approach, Alexa Fluor dyes were modified to contain chloro-substituted triazine ring at the end of the linker section. These modified dyes then were reacted with cellulose nanocrystals in acetonitrile at elevated temperature, again isolating material with the characteristic spectral bands of the Alexa Fluor dye. Reactions with Alexa Fluor 546 are given as detailed examples, labeling on the order of 1% of the total glucopyranose rings of the cellulose nanocrystals at dye loadings of ca. 5 μg/mg cellulose. Fluorescent cellulose nanocrystals were deposited in pore network microfluidic structures (PDMS) and proof-of-principle bioimaging experiments showed that the spatial localization of the solid cellulose deposits could be determined, and their disappearance under the action of Celluclast enzymes or microbes could be observed over time. In addition, single molecule fluorescence microscopy was demonstrated as a method to follow the disappearance of solid cellulose deposits over time, following the decrease in the number of single blinking dye molecules with time instead of fluorescent intensity.
Applied Physics Letters | 2010
Luciano De Sio; J. G. Cuennet; Andreas E. Vasdekis; Demetri Psaltis
We report an optofluidic photoswitchable grating, based on a polydimethylsiloxane periodic structure on a glass substrate, separated by a thin liquid crystal film. The polydimethylsiloxane microstructure was realized via high resolution replica molding and was employed to both confine and align a photosensitive nematic liquid crystal. In the absence of any surface treatment, the liquid crystal exhibited homeotropic alignment. By inducing planar alignment on the glass substrate, a hybrid orientation of the liquid crystal was achieved, inducing polarization sensitive transmission. The photosensitivity of the liquid crystal enabled the all-optical control of the grating transmission and 20% diffraction efficiency was measured.
Lab on a Chip | 2012
Wuzhou Song; Andreas E. Vasdekis; Demetri Psaltis
The synergetic integration of photonics and microfluidics has enabled a wide range of optofluidic devices that can be tuned based on various physical mechanisms. One such tuning mechanism can be realized based on the elasticity of polydimethylsiloxane (PDMS). The mechanical tuning of these optofluidic devices was achieved by modifying the geometry of the device upon applying internal or external forces. External or internal forces can deform the elastomeric components that in turn can alter the optical properties of the device or directly induce flow. In this review, we discuss recent progress in tunable optofluidic devices, where tunability is enabled by the elasticity of the construction material. Different subtypes of such tuning methods will be summarized, namely tuning based on bulk or membrane deformations, and pneumatic actuation.
International Journal of Molecular Sciences | 2011
Andreas E. Vasdekis; Gregoire P.J. Laporte
Microfluidics and optofluidics have revolutionized high-throughput analysis and chemical synthesis over the past decade. Single molecule imaging has witnessed similar growth, due to its capacity to reveal heterogeneities at high spatial and temporal resolutions. However, both resolution types are dependent on the signal to noise ratio (SNR) of the image. In this paper, we review how the SNR can be enhanced in optofluidics and microfluidics. Starting with optofluidics, we outline integrated photonic structures that increase the signal emitted by single chromophores and minimize the excitation volume. Turning then to microfluidics, we review the compatible functionalization strategies that reduce noise stemming from non-specific interactions and architectures that minimize bleaching and blinking.
Biomacromolecules | 2010
Andreas E. Vasdekis; Conlin P. O'Neil; Jeffrey A. Hubbell; Demetri Psaltis
Methods to manipulate and visualize isolated DNA and oligonucleotide strands are important for investigation of their biophysics as well as their interactions with proteins. Herein, we report such a method by combining a block copolymer surface functionalization strategy with microfluidics. The copolymer poly(l-lysine-graft-polyethylene glycol) (PLL-g-PEG) coated one surface of the microfluidic channels, rendering it passive to adsorption and thus minimizing any noise arising from nontargeted adsorbed molecules. Single lambda-phage DNA molecules were immobilized and were extended by molecular combing. Their extension did not exceed their contour length, which we attribute to the low surface tension of the coated surface. To demonstrate further the applicability of our method, the anchored DNA was extended by hydrodynamic flow. We propose this method for exploring DNA-protein interactions due to the copolymers enhanced capacity for single-molecule detection, stability under wet or dry conditions, hydrophilicity, full compatibility with microfluidics and simplicity being a one-step process.
Optics Express | 2011
Luciano De Sio; Andreas E. Vasdekis; J. G. Cuennet; Antonio De Luca; Alfredo Pane; Demetri Psaltis
We report an optical switch based on a diffraction grating by combining PDMS microstructures with a photo-responsive Nematic Liquid Crystal (NLC). The grating was realized via replica molding and was subsequently coated with a thin SiO layer. SiO induced a full planar alignment of the liquid crystal. The induced parallel alignment of the LC reduces the response time of the structure by approximately an order of magnitude compared to the same structures without SiO. We explored the effect of the pump intensity on the transmission properties and time response of the switch and identified a strong dependence on the probe polarization, due to the full planar alignment in this structure. The aforementioned inclusion of the SiO layer enables enhanced performance of optical devices based on the fusion of nematogens with soft and flexible substrates.
RSC Advances | 2013
Andreas E. Vasdekis
Life on Earth is comprised mostly of microbes with significant implications in disease and carbon cycling. However, their dimensions and mobility make microbes challenging to analyse on-chip. A sub-micron resolution microfluidic system (sub-microfluidics) capable of trapping and releasing single Escherichia coli bacteria is presented. The fabrication method based on electron-beam and cast molding lithography is described, as well as the trap and release of single E. coli. The release time from the trap is found to depend on cell morphology.
Journal of Materials Chemistry C | 2013
Luciano De Sio; Giovanna Palermo; Vincenzo Caligiuri; Andreas E. Vasdekis; Alfredo Pane; Jae-Woo Choi; Luc Maffli; Muhamed Niklaus; Herbert Shea; Cesare Umeton
We report an electro-responsive and pressure sensitive device based on conductive polydimethylsiloxane (PDMS) combined with a short pitch Cholesteric Liquid Crystal (CLC). Ion-implantation and surface chemistry in PDMS enable both the induction of conducting properties in this elastomer as well as long range organization of the CLC. Sample electro-optical and pressure dependent optical properties are explored by applying a modulated electric field through the conducting PDMS and a uniform pressure on the top cover substrate. We show that both an electric field of a few V μm−1 and an external pressure of up to 128 kPa can tune the reflection band by about 100 nm.