Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andreas Ehn is active.

Publication


Featured researches published by Andreas Ehn.


Journal of Physics D | 2014

Dynamics, OH distributions and UV emission of a gliding arc at various flow-rates investigated by optical measurements

Jiajian Zhu; Zhiwei Sun; Zhongshan Li; Andreas Ehn; Marcus Aldén; M. Salewski; F. Leipold; Yukihiro Kusano

We demonstrate a plasma discharge which is generated between two diverging electrodes and extended into a gliding arc in non-equilibrium condition by an air flow at atmospheric pressure. Effects of the air flow rates on the dynamics, ground-state OH distributions and spectral characterization of UV emission of the gliding arc were investigated by optical methods. High-speed photography was utilized to reveal flow-rate dependent dynamics such as ignitions, propagation, short-cutting events, extinctions and conversions of the discharge from glowtype to spark-type. Short-cutting events and ignitions occur more frequently at higher flow rates. The anchor points of the gliding arc are mostly steady at the top of the electrodes at lower flow rates whereas at higher flow rates they glide up along the electrodes most of the time. The afterglow of fully developed gliding arcs is observed to decay over hundreds of microseconds after being electronically short-cut by a newly ignited arc. The extinction time decreases with the increase of the flow rate. The frequency of the conversion of a discharge from glow-type to spark-type increases with the flow rate. Additionally, spatial distributions of ground-state OH were investigated using planar laser-induced fluorescence. The results show that the shape, height, intensity and thickness of ground-state OH distribution vary significantly with air flow rates. Finally, UV emission of the gliding arc is measured using optical emission spectroscopy and it is found that the emission intensity of NO gamma (A-X), OH (A-X) and N-2 (C-B) increase with the flow rates showing more characteristics of spark-type arcs. The observed phenomena indicate the significance of the interaction between local turbulence and the gliding arc.


Optics Express | 2014

Stray light suppression in spectroscopy using periodic shadowing

Elias Kristensson; Joakim Bood; Marcus Aldén; Emil Nordström; Jiajian Zhu; S Huldt; Per-Erik Bengtsson; Hampus Nilsson; Edouard Berrocal; Andreas Ehn

It is well known that spectroscopic measurements suffer from an interference known as stray light, causing spectral distortion that reduces measurement accuracy. In severe situations, stray light may even obscure the existence of spectral lines. Here a novel general method is presented, named Periodic Shadowing, that enables effective stray light elimination in spectroscopy and experimental results are provided to demonstrate its capabilities and versatility. Besides its efficiency, implementing it in a spectroscopic arrangement comes at virtually no added experimental complexity.


Applied Physics Letters | 2015

Measurements of 3D slip velocities and plasma column lengths of a gliding arc discharge

Jiajian Zhu; Jinlong Gao; Andreas Ehn; Marcus Aldén; Zhongshan Li; D. Moseev; Yukihiro Kusano; M. Salewski; Andreas Alpers; Peter Gritzmann; Martin Schwenk

A non-thermal gliding arc discharge was generated at atmospheric pressure in an air flow. The dynamics of the plasma column and tracer particles were recorded using two synchronized high-speed cameras. Whereas the data analysis for such systems has previously been performed in 2D (analyzing the single camera image), we provide here a 3D data analysis that includes 3D reconstructions of the plasma column and 3D particle tracking velocimetry based on discrete tomography methods. The 3D analysis, in particular, the determination of the 3D slip velocity between the plasma column and the gas flow, gives more realistic insight into the convection cooling process. Additionally, with the determination of the 3D slip velocity and the 3D length of the plasma column, we give more accurate estimates for the drag force, the electric field strength, the power per unit length, and the radius of the conducting zone of the plasma column.


Optics Express | 2012

Single-laser shot fluorescence lifetime imaging on the nanosecond timescale using a Dual Image and Modeling Evaluation algorithm

Andreas Ehn; Olof Johansson; Andreas Arvidsson; Marcus Aldén; Joakim Bood

A novel technique, designated dual imaging and modeling evaluation (DIME), for evaluating single-laser shot fluorescence lifetimes is presented. The technique is experimentally verified in a generic gas mixing experiment to provide a clear demonstration of the rapidness and sensitivity of the detector scheme. Single-laser shot fluorescence lifetimes of roughly 800 ps with a standard deviation of ~120 ps were determined. These results were compared to streak camera measurements. Furthermore, a general fluorescence lifetime determination algorithm is proposed. The evaluation algorithm has an analytic, linear relationship between the fluorescence lifetime and detector signal ratio. In combination with the DIME detector scheme, it is a faster, more accurate and more sensitive approach for rapid fluorescence lifetime imaging than previously proposed techniques. Monte Carlo simulations were conducted to analyze the sensitivity of the detector scheme as well as to compare the proposed evaluation algorithm to previously presented rapid lifetime determination algorithms.


Journal of The Electrochemical Society | 2010

Electrochemical Investigation of Nickel Pattern Electrodes in H[sub 2]/H[sub 2]O and CO/CO[sub 2] Atmospheres

Andreas Ehn; J. Ho̸gh; Mariusz Graczyk; Kion Norrman; Lars Montelius; Mark Linne; Mogens Bjerg Mogensen

In this study, nickel pattern electrodes were electrochemically investigated in a three-electrode setup, operating both with H-2/H2O and CO/CO2 atmospheres. Heating introduced structural differences in the nickel layer among the pattern electrodes, which appear to affect the electrode performance. Both dense and porous nickel pattern electrodes were formed by heating. Holes appeared in the nickel layer of the porous pattern electrodes, where the open cavity triple phase boundaries exhibited different limiting processes than open triple phase boundary electrodes of the dense electrode. As the temperature was raised in the experiment, the electrodes stabilized, with a degraded behavior that seemed to be strongly coupled to the structural changes in the electrode. It was possible to compare literature results with high temperature impedance measurements in H-2/H2O presented here, while new results at lower temperatures in H-2/H2O are also presented. Impedance spectroscopy measurements were performed, and the gas dependence of the polarization resistance was observed as the mixture ratios and temperatures were varied in both atmospheres. A positive relation between the polarization resistance and the partial pressure of CO was determined for the dense nickel pattern electrode, which agrees with previous results using nickel point electrodes


Journal of The Electrochemical Society | 2010

Electrochemical Investigation of Nickel Pattern Electrodes in H-2/H2O and CO/CO2 Atmospheres

Andreas Ehn; Jens Valdemar Thorvald Høgh; Mariusz Graczyk; Kion Norrman; Lars Montelius; Mark Linne; Mogens Bjerg Mogensen

In this study, nickel pattern electrodes were electrochemically investigated in a three-electrode setup, operating both with H-2/H2O and CO/CO2 atmospheres. Heating introduced structural differences in the nickel layer among the pattern electrodes, which appear to affect the electrode performance. Both dense and porous nickel pattern electrodes were formed by heating. Holes appeared in the nickel layer of the porous pattern electrodes, where the open cavity triple phase boundaries exhibited different limiting processes than open triple phase boundary electrodes of the dense electrode. As the temperature was raised in the experiment, the electrodes stabilized, with a degraded behavior that seemed to be strongly coupled to the structural changes in the electrode. It was possible to compare literature results with high temperature impedance measurements in H-2/H2O presented here, while new results at lower temperatures in H-2/H2O are also presented. Impedance spectroscopy measurements were performed, and the gas dependence of the polarization resistance was observed as the mixture ratios and temperatures were varied in both atmospheres. A positive relation between the polarization resistance and the partial pressure of CO was determined for the dense nickel pattern electrode, which agrees with previous results using nickel point electrodes


Applied Physics Letters | 2014

Sustained diffusive alternating current gliding arc discharge in atmospheric pressure air

Jiajian Zhu; Jinlong Gao; Zhongshan Li; Andreas Ehn; Marcus Aldén; Anders Larsson; Yukihiro Kusano

Rapid transition from glow discharge to thermal arc has been a common problem in generating stable high-power non-thermal plasmas especially at ambient conditions. A sustained diffusive gliding arc discharge was generated in a large volume in atmospheric pressure air, driven by an alternating current (AC) power source. The plasma column extended beyond the water-cooled stainless steel electrodes and was stabilized by matching the flow speed of the turbulent air jet with the rated output power. Comprehensive investigations were performed using high-speed movies measured over the plasma column, synchronized with simultaneously recorded current and voltage waveforms. Dynamic details of the novel non-equilibrium discharge are revealed, which is characterized by a sinusoidal current waveform with amplitude stabilized at around 200 mA intermediate between thermal arc and glow discharge, shedding light to the governing mechanism of the sustained spark-suppressed AC gliding arc discharge.


Physics of Plasmas | 2017

Spatiotemporally resolved characteristics of a gliding arc discharge in a turbulent air flow at atmospheric pressure

Jiajian Zhu; Jinlong Gao; Andreas Ehn; Marcus Aldén; Anders Larsson; Yukihiro Kusano; Zhongshan Li

A gliding arc discharge was generated in a turbulent air flow at atmospheric pressure driven by a 35 kHz alternating current (AC) electric power. The spatiotemporally resolved characteristics of the gliding arc discharge, including glow-type discharges, spark-type discharges, short-cutting events and transitions among the different types of discharges, were investigated using simultaneously optical and electrical diagnostics. The glow-type discharge shows sinusoidal-like voltage and current waveforms with a peak current of hundreds of milliamperes. The frequency of the emission intensity variation of the glow-type discharge is the same as that of the electronic power dissipated in the plasma column. The glow-type discharge can transfer into a spark discharge characterized by a sharp peak current of several amperes and a sudden increase of the brightness in the plasma column. Transitions can also be found to take place from spark-type discharges to glow-type discharges. Short-cutting events were often obse...


Applied Spectroscopy | 2017

Advanced Laser-Based Techniques for Gas-Phase Diagnostics in Combustion and Aerospace Engineering

Andreas Ehn; Jiajian Zhu; Xuesong Li; Johannes Kiefer

Gaining information of species, temperature, and velocity distributions in turbulent combustion and high-speed reactive flows is challenging, particularly for conducting measurements without influencing the experimental object itself. The use of optical and spectroscopic techniques, and in particular laser-based diagnostics, has shown outstanding abilities for performing non-intrusive in situ diagnostics. The development of instrumentation, such as robust lasers with high pulse energy, ultra-short pulse duration, and high repetition rate along with digitized cameras exhibiting high sensitivity, large dynamic range, and frame rates on the order of MHz, has opened up for temporally and spatially resolved volumetric measurements of extreme dynamics and complexities. The aim of this article is to present selected important laser-based techniques for gas-phase diagnostics focusing on their applications in combustion and aerospace engineering. Applicable laser-based techniques for investigations of turbulent flows and combustion such as planar laser-induced fluorescence, Raman and Rayleigh scattering, coherent anti-Stokes Raman scattering, laser-induced grating scattering, particle image velocimetry, laser Doppler anemometry, and tomographic imaging are reviewed and described with some background physics. In addition, demands on instrumentation are further discussed to give insight in the possibilities that are offered by laser flow diagnostics.


Light-Science & Applications | 2017

FRAME: femtosecond videography for atomic and molecular dynamics

Andreas Ehn; Joakim Bood; Zheming Li; Edouard Berrocal; Marcus Aldén; Elias Kristensson

Many important scientific questions in physics, chemistry and biology require effective methodologies to spectroscopically probe ultrafast intra- and inter-atomic/molecular dynamics. However, current methods that extend into the femtosecond regime are capable of only point measurements or single-snapshot visualizations and thus lack the capability to perform ultrafast spectroscopic videography of dynamic single events. Here we present a laser-probe-based method that enables two-dimensional videography at ultrafast timescales (femtosecond and shorter) of single, non-repetitive events. The method is based on superimposing a structural code onto the illumination to encrypt a single event, which is then deciphered in a post-processing step. This coding strategy enables laser probing with arbitrary wavelengths/bandwidths to collect signals with indiscriminate spectral information, thus allowing for ultrafast videography with full spectroscopic capability. To demonstrate the high temporal resolution of our method, we present videography of light propagation with record high 200 femtosecond temporal resolution. The method is widely applicable for studying a multitude of dynamical processes in physics, chemistry and biology over a wide range of time scales. Because the minimum frame separation (temporal resolution) is dictated by only the laser pulse duration, attosecond-laser technology may further increase video rates by several orders of magnitude.

Collaboration


Dive into the Andreas Ehn's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yukihiro Kusano

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tomas Hurtig

Swedish Defence Research Agency

View shared research outputs
Top Co-Authors

Avatar

M. Salewski

Technical University of Denmark

View shared research outputs
Researchain Logo
Decentralizing Knowledge