Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andreas G. Bader is active.

Publication


Featured researches published by Andreas G. Bader.


Nature Medicine | 2011

The microRNA miR-34a inhibits prostate cancer stem cells and metastasis by directly repressing CD44

Can Liu; Kevin Kelnar; Bigang Liu; Xin Chen; Tammy Calhoun-Davis; Hangwen Li; Lubna Patrawala; Hong Yan; Collene R. Jeter; Sofia Honorio; Jason Wiggins; Andreas G. Bader; Randy Fagin; David A. Brown; Dean G. Tang

Cancer stem cells (CSCs), or tumor-initiating cells, are involved in tumor progression and metastasis. MicroRNAs (miRNAs) regulate both normal stem cells and CSCs, and dysregulation of miRNAs has been implicated in tumorigenesis. CSCs in many tumors--including cancers of the breast, pancreas, head and neck, colon, small intestine, liver, stomach, bladder and ovary--have been identified using the adhesion molecule CD44, either individually or in combination with other marker(s). Prostate CSCs with enhanced clonogenic and tumor-initiating and metastatic capacities are enriched in the CD44(+) cell population, but whether miRNAs regulate CD44(+) prostate cancer cells and prostate cancer metastasis remains unclear. Here we show, through expression analysis, that miR-34a, a p53 target, was underexpressed in CD44(+) prostate cancer cells purified from xenograft and primary tumors. Enforced expression of miR-34a in bulk or purified CD44(+) prostate cancer cells inhibited clonogenic expansion, tumor regeneration, and metastasis. In contrast, expression of miR-34a antagomirs in CD44(-) prostate cancer cells promoted tumor development and metastasis. Systemically delivered miR-34a inhibited prostate cancer metastasis and extended survival of tumor-bearing mice. We identified and validated CD44 as a direct and functional target of miR-34a and found that CD44 knockdown phenocopied miR-34a overexpression in inhibiting prostate cancer regeneration and metastasis. Our study shows that miR-34a is a key negative regulator of CD44(+) prostate cancer cells and establishes a strong rationale for developing miR-34a as a novel therapeutic agent against prostate CSCs.Cancer stem cells (CSCs), or tumor-initiating cells, are involved in tumor progression and metastasis. MicroRNAs (miRNAs) regulate both normal stem cells and CSCs, and dysregulation of miRNAs has been implicated in tumorigenesis. CSCs in many tumors—including cancers of the breast, pancreas, head and neck, colon, small intestine, liver, stomach, bladder and ovary—have been identified using the adhesion molecule CD44, either individually or in combination with other marker(s). Prostate CSCs with enhanced clonogenic and tumor-initiating and metastatic capacities are enriched in the CD44+ cell population, but whether miRNAs regulate CD44+ prostate cancer cells and prostate cancer metastasis remains unclear. Here we show, through expression analysis, that miR-34a, a p53 target, was underexpressed in CD44+ prostate cancer cells purified from xenograft and primary tumors. Enforced expression of miR-34a in bulk or purified CD44+ prostate cancer cells inhibited clonogenic expansion, tumor regeneration, and metastasis. In contrast, expression of miR-34a antagomirs in CD44− prostate cancer cells promoted tumor development and metastasis. Systemically delivered miR-34a inhibited prostate cancer metastasis and extended survival of tumor-bearing mice. We identified and validated CD44 as a direct and functional target of miR-34a and found that CD44 knockdown phenocopied miR-34a overexpression in inhibiting prostate cancer regeneration and metastasis. Our study shows that miR-34a is a key negative regulator of CD44+ prostate cancer cells and establishes a strong rationale for developing miR-34a as a novel therapeutic agent against prostate CSCs.


Nature Reviews Cancer | 2005

Oncogenic PI3K deregulates transcription and translation

Andreas G. Bader; Sohye Kang; Li Zhao; Peter K. Vogt

There have long been indications of a role for PI3K (phosphatidylinositol 3-kinase) in cancer pathogenesis. Experimental data document a requirement for deregulation of both transcription and translation in PI3K-mediated oncogenic transformation. The recent discoveries of cancer-specific mutations in PIK3CA, the gene that encodes the catalytic subunit p110α of PI3K, have heightened the interest in the oncogenic potential of this lipid kinase and have made p110α an ideal drug target.


Cell Cycle | 2008

The let-7 microRNA reduces tumor growth in mouse models of lung cancer

Aurora Esquela-Kerscher; Phong Trang; Jason Wiggins; Lubna Patrawala; Angie Cheng; Lance Ford; Joanne B. Weidhaas; David A. Brown; Andreas G. Bader; Frank J. Slack

MicroRNAs have been increasingly implicated in human cancer and interest has grown about the potential to use microRNAs to combat cancer. Lung cancer is the most prevalent form of cancer worldwide and lacks effective therapies. Here we have used both in vitro and in vivo approaches to show that the let-7 microRNA directly represses cancer growth in the lung. We find that let-7 inhibits the growth of multiple human lung cancer cell lines in culture, as well as the growth of lung cancer cell xenografts in immunodeficient mice. Using an established orthotopic mouse lung cancer model, we show that intranasal let-7 administration reduces tumor formation in vivo in the lungs of animals expressing a G12D activating mutation for the K-ras oncogene. These findings provide direct evidence that let-7 acts as a tumor suppressor gene in the lung and indicate that this miRNA may be useful as a novel therapeutic agent in lung cancer.


Molecular Therapy | 2011

Systemic Delivery of Tumor Suppressor microRNA Mimics Using a Neutral Lipid Emulsion Inhibits Lung Tumors in Mice

Phong Trang; Jason Wiggins; Christopher L. Daige; Chris Cho; Michael Omotola; David A. Brown; Joanne B. Weidhaas; Andreas G. Bader; Frank J. Slack

MicroRNAs (miRNAs) are emerging as potential cancer therapeutics, but effective delivery mechanisms to tumor sites are a roadblock to utility. Here we show that systemically delivered, synthetic miRNA mimics in complex with a novel neutral lipid emulsion are preferentially targeted to lung tumors and show therapeutic benefit in mouse models of lung cancer. Therapeutic delivery was demonstrated using mimics of the tumor suppressors, microRNA-34a (miR-34a) and let-7, both of which are often down regulated or lost in lung cancer. Systemic treatment of a Kras-activated autochthonous mouse model of non-small cell lung cancer (NSCLC) led to a significant decrease in tumor burden. Specifically, mice treated with miR-34a displayed a 60% reduction in tumor area compared to mice treated with a miRNA control. Similar results were obtained with the let-7 mimic. These findings provide direct evidence that synthetic miRNA mimics can be systemically delivered to the mammalian lung and support the promise of miRNAs as a future targeted therapy for lung cancer.


Oncogene | 2010

Regression of murine lung tumors by the let-7 microRNA

Phong Trang; Pedro P. Medina; Jason Wiggins; Lynnsie Ruffino; Kevin Kelnar; Michael Omotola; Robert J. Homer; David Brown; Andreas G. Bader; Joanne B. Weidhaas; Frank J. Slack

MicroRNAs (miRNAs) have recently emerged as an important new class of cellular regulators that control various cellular processes and are implicated in human diseases, including cancer. Here, we show that loss of let-7 function enhances lung tumor formation in vivo, strongly supporting the hypothesis that let-7 is a tumor suppressor. Moreover, we report that exogenous delivery of let-7 to established tumors in mouse models of non-small-cell lung cancer (NSCLC) significantly reduces the tumor burden. These results demonstrate the therapeutic potential of let-7 in NSCLC and point to miRNA replacement therapy as a promising approach in cancer treatment.


Cancer Research | 2010

The Promise of MicroRNA Replacement Therapy

Andreas G. Bader; David Brown; Matthew Winkler

MicroRNAs (miRNA), a class of natural RNA-interfering agents, have recently been identified as attractive targets for therapeutic intervention. The rationale for developing miRNA therapeutics is based on the premise that aberrantly expressed miRNAs play key roles in the development of human disease, and that correcting these miRNA deficiencies by either antagonizing or restoring miRNA function may provide a therapeutic benefit. Although miRNA antagonists are conceptually similar to other inhibitory therapies, restoring the function of a miRNA by miRNA replacement is a less well characterized approach. Here, we discuss the specific properties of miRNA replacement and review recent examples that explored the therapeutic delivery of miRNA mimics in animal models of cancer.


Molecular Therapy | 2010

Systemic Delivery of Synthetic MicroRNA-16 Inhibits the Growth of Metastatic Prostate Tumors via Downregulation of Multiple Cell-cycle Genes

Fumitaka Takeshita; Lubna Patrawala; Mitsuhiko Osaki; Ryou U. Takahashi; Yusuke Yamamoto; Nobuyoshi Kosaka; Masaki Kawamata; Kevin Kelnar; Andreas G. Bader; David A. Brown; Takahiro Ochiya

Recent reports have linked the expression of specific microRNAs (miRNAs) with tumorigenesis and metastasis. Here, we show that microRNA (miR)-16, which is expressed at lower levels in prostate cancer cells, affects the proliferation of human prostate cancer cell lines both in vitro and in vivo. Transient transfection with synthetic miR-16 significantly reduced cell proliferation of 22Rv1, Du145, PPC-1, and PC-3M-luc cells. A prostate cancer xenograft model revealed that atelocollagen could efficiently deliver synthetic miR-16 to tumor cells on bone tissues in mice when injected into tail veins. In the therapeutic bone metastasis model, injection of miR-16 with atelocollagen via tail vein significantly inhibited the growth of prostate tumors in bone. Cell model studies indicate that miR-16 likely suppresses prostate tumor growth by regulating the expression of genes such as CDK1 and CDK2 associated with cell-cycle control and cellular proliferation. There is a trend toward lower miR-16 expression in human prostate tumors versus normal prostate tissues. Thus, this study indicates the therapeutic potential of miRNA in an animal model of cancer metastasis with systemic miRNA injection and suggest that systemic delivery of miR-16 could be used to treat patients with advanced prostate cancer.


Proceedings of the National Academy of Sciences of the United States of America | 2006

Cancer-specific mutations in PIK3CA are oncogenic in vivo

Andreas G. Bader; Sohye Kang; Peter K. Vogt

The PIK3CA gene, coding for the catalytic subunit p110α of class IA phosphatidylinositol 3-kinases (PI3Ks), is frequently mutated in human cancer. Mutated p110α proteins show a gain of enzymatic function in vitro and are oncogenic in cell culture. Here, we show that three prevalent mutants of p110α, E542K, E545K, and H1047R, are oncogenic in vivo. They induce tumors in the chorioallantoic membrane of the chicken embryo and cause hemangiosarcomas in the animal. These tumors are marked by increased angiogenesis and an activation of the Akt pathway. The target of rapamycin inhibitor RAD001 blocks tumor growth induced by the H1047R p110α mutant. The in vivo oncogenicity of PIK3CA mutants in an avian species strongly suggests a critical role for these mutated proteins in human malignancies.


Journal of the National Cancer Institute | 2016

PDL1 Regulation by p53 via miR-34

Maria Angelica Abdalla Cortez; Cristina Ivan; David Valdecanas; Xiaohong Wang; Heidi J. Peltier; Yuping Ye; Luiz H. Araujo; David P. Carbone; Konstantin Shilo; Dipak K. Giri; Kevin Kelnar; Desiree Martin; Ritsuko Komaki; Daniel R. Gomez; Sunil Krishnan; George A. Calin; Andreas G. Bader; James Welsh

Background: Although clinical studies have shown promise for targeting PD1/PDL1 signaling in non–small cell lung cancer (NSCLC), the regulation of PDL1 expression is poorly understood. Here, we show that PDL1 is regulated by p53 via miR-34. Methods: p53 wild-type and p53-deficient cell lines (p53–/– and p53+/+ HCT116, p53-inducible H1299, and p53-knockdown H460) were used to determine if p53 regulates PDL1 via miR-34. PDL1 and miR-34a expression were analyzed in samples from patients with NSCLC and mutated p53 vs wild-type p53 tumors from The Cancer Genome Atlas for Lung Adenocarcinoma (TCGA LUAD). We confirmed that PDL1 is a direct target of miR-34 with western blotting and luciferase assays and used a p53R172HΔg/+K-rasLA1/+ syngeneic mouse model (n = 12) to deliver miR-34a–loaded liposomes (MRX34) plus radiotherapy (XRT) and assessed PDL1 expression and tumor-infiltrating lymphocytes (TILs). A two-sided t test was applied to compare the mean between different treatments. Results: We found that p53 regulates PDL1 via miR-34, which directly binds to the PDL1 3’ untranslated region in models of NSCLC (fold-change luciferase activity to control group, mean for miR-34a = 0.50, SD = 0.2, P < .001; mean for miR-34b = 0.52, SD = 0.2, P = .006; and mean for miR-34c = 0.59, SD = 0.14, and P = .006). Therapeutic delivery of MRX34, currently the subject of a phase I clinical trial, promoted TILs (mean of CD8 expression percentage of control group = 22.5%, SD = 1.9%; mean of CD8 expression percentage of MRX34 = 30.1%, SD = 3.7%, P = .016, n = 4) and reduced CD8+PD1+ cells in vivo (mean of CD8/PD1 expression percentage of control group = 40.2%, SD = 6.2%; mean of CD8/PD1 expression percentage of MRX34 = 20.3%, SD = 5.1%, P = .001, n = 4). Further, MRX34 plus XRT increased CD8+ cell numbers more than either therapy alone (mean of CD8 expression percentage of MRX34 plus XRT to control group = 44.2%, SD = 8.7%, P = .004, n = 4). Finally, miR-34a delivery reduced the numbers of radiation-induced macrophages (mean of F4-80 expression percentage of control group = 52.4%, SD = 1.7%; mean of F4-80 expression percentage of MRX34 = 40.1%, SD = 3.5%, P = .008, n = 4) and T-regulatory cells. Conclusions: We identified a novel mechanism by which tumor immune evasion is regulated by p53/miR-34/PDL1 axis. Our results suggest that delivery of miRNAs with standard therapies, such as XRT, may represent a novel therapeutic approach for lung cancer.


Oncogene | 2015

A combinatorial microRNA therapeutics approach to suppressing non-small cell lung cancer

Andrea L. Kasinski; Kevin Kelnar; Carlos Stahlhut; Esteban A. Orellana; Jane Zhao; Eliot Shimer; Sarah Dysart; Xiaowei Chen; Andreas G. Bader; Frank J. Slack

Targeted cancer therapies, although often effective, have limited utility owing to preexisting primary or acquired secondary resistance. Consequently, agents are sometimes used in combination to simultaneously affect multiple targets. MicroRNA mimics are excellent therapeutic candidates because of their ability to repress multiple oncogenic pathways at once. Here we treated the aggressive Kras;p53 non-small cell lung cancer mouse model and demonstrated efficacy with a combination of two tumor-suppressive microRNAs (miRNAs). Systemic nanodelivery of miR-34 and let-7 suppressed tumor growth leading to survival advantage. This combinatorial miRNA therapeutic approach engages numerous components of tumor cell-addictive pathways and highlights the ability to deliver multiple miRNAs in a safe and effective manner to target lung tissue.

Collaboration


Dive into the Andreas G. Bader's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peter K. Vogt

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jason Wiggins

University of Texas System

View shared research outputs
Top Co-Authors

Avatar

David A. Brown

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar

Lubna Patrawala

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge