Andreas Gisel
University of California, Berkeley
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Andreas Gisel.
PLOS ONE | 2009
Beatriz Navarro; Vitantonio Pantaleo; Andreas Gisel; Simon Moxon; Tamas Dalmay; György Dénes Bisztray; Francesco Di Serio; József Burgyán
Background Viroids are circular, highly structured, non-protein-coding RNAs that, usurping cellular enzymes and escaping host defense mechanisms, are able to replicate and move through infected plants. Similarly to viruses, viroid infections are associated with the accumulation of viroid-derived 21–24 nt small RNAs (vd-sRNAs) with the typical features of the small interfering RNAs characteristic of RNA silencing, a sequence-specific mechanism involved in defense against invading nucleic acids and in regulation of gene expression in most eukaryotic organisms. Methodology/Principal Findings To gain further insights on the genesis and possible role of vd-sRNAs in plant-viroid interaction, sRNAs isolated from Vitis vinifera infected by Hop stunt viroid (HSVd) and Grapevine yellow speckle viroid 1 (GYSVd1) were sequenced by the high-throughput platform Solexa-Illumina, and the vd-sRNAs were analyzed. The large majority of HSVd- and GYSVd1-sRNAs derived from a few specific regions (hotspots) of the genomic (+) and (−) viroid RNAs, with a prevalence of those from the (−) strands of both viroids. When grouped according to their sizes, vd-sRNAs always assumed a distribution with prominent 21-, 22- and 24-nt peaks, which, interestingly, mapped at the same hotspots. Conclusions/Significance These findings show that different Dicer-like enzymes (DCLs) target viroid RNAs, preferentially accessing to the same viroid domains. Interestingly, our results also suggest that viroid RNAs may interact with host enzymes involved in the RNA-directed DNA methylation pathway, indicating more complex scenarios than previously thought for both vd-sRNAs genesis and possible interference with host gene expression.
Journal of Virology | 2010
Francesco Di Serio; Ángel-Emilio Martínez de Alba; Beatriz Navarro; Andreas Gisel; Ricardo Flores
ABSTRACT The detection of viroid-derived small RNAs (vd-sRNAs) similar to the small interfering RNAs (siRNAs, 21 to 24 nucleotides [nt]) in plants infected by nuclear-replicating members of the family Pospiviroidae (type species, Potato spindle tuber viroid [PSTVd]) indicates that they are inducers and targets of the RNA-silencing machinery of their hosts. RNA-dependent RNA polymerase 6 (RDR6) catalyzes an amplification circuit producing the double-stranded precursors of secondary siRNAs. Recently, the role of RDR6 in restricting systemic spread of certain RNA viruses and precluding their invasion of the apical growing tip has been documented using RDR6-silenced Nicotiana benthamiana (NbRDR6i) plants. Here we show that RDR6 is also engaged in regulating PSTVd levels: accumulation of PSTVd genomic RNA was increased in NbRDR6i plants with respect to the wild-type controls (Nbwt) early in infection, whereas this difference decreased or disappeared in later infection stages. Moreover, in situ hybridization revealed that RDR6 is involved in restricting PSTVd access in floral and vegetative meristems, thus providing firm genetic evidence for an antiviroid RNA silencing mechanism. RNA gel blot hybridization and deep sequencing showed in wt and RDR6i backgrounds that PSTVd sRNAs (i) accumulate to levels paralleling their genomic RNA, (ii) display similar patterns with prevailing 22- or 21-nt plus-strand species, and (iii) adopt strand-specific hot spot profiles along the genomic RNA. Therefore, the surveillance mechanism restraining entry of some RNA viruses into meristems likely also controls PSTVd access in N. benthamiana. Unexpectedly, deep sequencing also disclosed in NbRDR6i plants a profile of RDR6-derived siRNA dominated by 21-nt plus-strand species mapping within a narrow window of the hairpin RNA stem expressed transgenically for silencing RDR6, indicating that minus-strand siRNAs silencing the NbRDR6 mRNA represent a minor fraction of the total siRNA population.
Proceedings of the National Academy of Sciences of the United States of America | 2002
Andreas Gisel; Frederick D. Hempel; Sandra Barella; Patricia C. Zambryski
Classical experiments in plant physiology showed that leaves are the source of signals that control the development of flowers from shoot meristems. Additional physiological and genetic experiments have indicated some of the molecules (e.g., gibberellins, cytokinins, and sucrose) that promote flowering in mustards including Arabidopsis. These small hydrophilic molecules are likely to move to the shoot apex symplastically via the phloem and/or via cell-to-cell movement through plasmodesmata. To analyze potential changes in the symplastic trafficking of small molecules during the induction of flowering in Arabidopsis, we measured changes in the flow of symplastic tracers from the leaf to the shoot apex. We previously found that the onset of flowering is coincident with an evident decrease in the leaf-to-shoot trafficking of symplastic tracer molecules; this decrease in trafficking is transitory and resumes when floral development is established. Here we provide detailed analyses of symplastic connectivity during floral induction by monitoring tracer movement under different photoperiodic induction conditions and in a number of genetic backgrounds with altered flowering times. In all cases, the correlation between flowering and the reduction of symplastic tracer movement holds true. The lack of tracer movement during the induction of flowering may represent a change in plasmodesmal selectivity at this time or that a period of reduced symplastic communication is associated with floral induction.
PLOS ONE | 2009
Francesco Di Serio; Andreas Gisel; Beatriz Navarro; Sonia Delgado; Ángel-Emilio Martínez de Alba; Giacinto Donvito; Ricardo Flores
Northern-blot hybridization and low-scale sequencing have revealed that plants infected by viroids, non-protein-coding RNA replicons, accumulate 21–24 nt viroid-derived small RNAs (vd-sRNAs) similar to the small interfering RNAs, the hallmarks of RNA silencing. These results strongly support that viroids are elicitors and targets of the RNA silencing machinery of their hosts. Low-scale sequencing, however, retrieves partial datasets and may lead to biased interpretations. To overcome this restraint we have examined by deep sequencing (Solexa-Illumina) and computational approaches the vd-sRNAs accumulating in GF-305 peach seedlings infected by two molecular variants of Peach latent mosaic viroid (PLMVd) inciting peach calico (albinism) and peach mosaic. Our results show in both samples multiple PLMVd-sRNAs, with prevalent 21-nt (+) and (−) RNAs presenting a biased distribution of their 5′ nucleotide, and adopting a hotspot profile along the genomic (+) and (−) RNAs. Dicer-like 4 and 2 (DCL4 and DCL2, respectively), which act hierarchically in antiviral defense, likely also mediate the genesis of the 21- and 22-nt PLMVd-sRNAs. More specifically, because PLMVd replicates in plastids wherein RNA silencing has not been reported, DCL4 and DCL2 should dice the PLMVd genomic RNAs during their cytoplasmic movement or the PLMVd-dsRNAs generated by a cytoplasmic RNA-dependent RNA polymerase (RDR), like RDR6, acting in concert with DCL4 processing. Furthermore, given that vd-sRNAs derived from the 12–14-nt insertion containing the pathogenicity determinant of peach calico are underrepresented, it is unlikely that symptoms may result from the accidental targeting of host mRNAs by vd-sRNAs from this determinant guiding the RNA silencing machinery.
BMC Bioinformatics | 2007
Elisabetta Sbisà; Domenico Catalano; Giorgio Grillo; Flavio Licciulli; Antonio Turi; Sabino Liuni; Anna De Grassi; Mariano Francesco Caratozzolo; Anna Maria D'Erchia; Beatriz Navarro; Apollonia Tullo; Cecilia Saccone; Andreas Gisel
BackgroundThe p53 gene family consists of the three genes p53, p63 and p73, which have polyhedral non-overlapping functions in pivotal cellular processes such as DNA synthesis and repair, growth arrest, apoptosis, genome stability, angiogenesis, development and differentiation. These genes encode sequence-specific nuclear transcription factors that recognise the same responsive element (RE) in their target genes. Their inactivation or aberrant expression may determine tumour progression or developmental disease. The discovery of several protein isoforms with antagonistic roles, which are produced by the expression of different promoters and alternative splicing, widened the complexity of the scenario of the transcriptional network of the p53 family members. Therefore, the identification of the genes transactivated by p53 family members is crucial to understand the specific role for each gene in cell cycle regulation. We have combined a genome-wide computational search of p53 family REs and microarray analysis to identify new direct target genes. The huge amount of biological data produced has generated a critical need for bioinformatic tools able to manage and integrate such data and facilitate their retrieval and analysis.DescriptionWe have developed the p53FamTaG database (p53 FAMily TArget Genes), a modular relational database, which contains p53 family direct target genes selected in the human genome searching for the presence of the REs and the expression profile of these target genes obtained by microarray experiments. p53FamTaG database also contains annotations of publicly available databases and links to other experimental data.The genome-wide computational search of the REs was performed using PatSearch, a pattern-matching program implemented in the DNAfan tool. These data were integrated with the microarray results we produced from the overexpression of different isoforms of p53, p63 and p73 stably transfected in isogenic cell lines, allowing the comparative study of the transcriptional activity of all the proteins in the same cellular background.p53FamTaG database is available free at http://www2.ba.itb.cnr.it/p53FamTaG/Conclusionp53FamTaG represents a unique integrated resource of human direct p53 family target genes that is extensively annotated and provides the users with an efficient query/retrieval system which displays the results of our microarray experiments and allows the export of RE sequences. The database was developed for supporting and integrating high-throughput in silico and experimental analyses and represents an important reference source of knowledge for research groups involved in the field of oncogenesis, apoptosis and cell cycle regulation.
Virus Research | 2015
Ricardo Flores; Sofia Minoia; Alberto Carbonell; Andreas Gisel; Sonia Delgado; A. López-Carrasco; B. Navarro; F. Di Serio
The discovery of viroids about 45 years ago heralded a revolution in Biology: small RNAs comprising around 350 nt were found to be able to replicate autonomously-and to incite diseases in certain plants-without encoding proteins, fundamental properties discriminating these infectious agents from viruses. The initial focus on the pathological effects usually accompanying infection by viroids soon shifted to their molecular features-they are circular molecules that fold upon themselves adopting compact secondary conformations-and then to how they manipulate their hosts to be propagated. Replication of viroids-in the nucleus or chloroplasts through a rolling-circle mechanism involving polymerization, cleavage and circularization of RNA strands-dealt three surprises: (i) certain RNA polymerases are redirected to accept RNA instead of their DNA templates, (ii) cleavage in chloroplastic viroids is not mediated by host enzymes but by hammerhead ribozymes, and (iii) circularization in nuclear viroids is catalyzed by a DNA ligase redirected to act upon RNA substrates. These enzymes (and ribozymes) are most probably assisted by host proteins, including transcription factors and RNA chaperones. Movement of viroids, first intracellularly and then to adjacent cells and distal plant parts, has turned out to be a tightly regulated process in which specific RNA structural motifs play a crucial role. More recently, the advent of RNA silencing has brought new views on how viroids may cause disease and on how their hosts react to contain the infection; additionally, viroid infection may be restricted by other mechanisms. Representing the lowest step on the biological size scale, viroids have also attracted considerable interest to get a tentative picture of the essential characteristics of the primitive replicons that populated the postulated RNA world.
In: M.A.Mahdavi, editor(s). Bioinformatics - Trends and Methodologies. ntech Online Publishers; 2011.. | 2011
Teresa K. Attwood; Andreas Gisel; Ne Eriksson; Erik Bongcam-Rudloff
Concepts, Historical Milestones and the Central Place of Bioinformatics in Modern Biology : A European Perspective
Sexual Plant Reproduction | 1994
Nathalie Leduc; Victor A. Iglesias; Roland Bilang; Andreas Gisel; Ingo Potrykus; Christof Sautter
Direct gene transfer to floral meristems could contribute to cell-fate mapping, to the study of flower-specific genes and promoters, and to the production of transgenic gametes via the transformation of sporogenic tissues. Despite the wide potential of its applications, direct gene transfer to floral meristems has not been achieved so far because of the lack of suitable technology. We show in this paper that ballistic micro-targeting is the technique of choice for this purpose, and in this way, we were able to transfer genes efficiently into excised wheat immature spikes. Particle size was adjusted for optimal penetration into the L1 and L2 cell layers of the spikes with limited cell damage. Spikes at different developmental stages were shot either with a plasmid containing two genes involved in anthocyanin biosynthesis or with a plasmid bearing the uidA (β-glucuronidase) gene. The transient expression of these marker genes was observed in the different developmental stages tested and in cells of both the L1 and the L2 layers. The transient expression of the uidA gene was significantly increased when the sucrose concentration in the culture medium was increased from 0.06 to 0.52 M. At the highest concentration, 100% of the targeted spikes expressed the uidA gene, with an average of 69 blue cells per spike. Twelve days after microtargeting, multicellular sectors showing transgene expression and containing up to 17 cells were found in 85% of the shot immature inflorescences. This indicated that targeted cells survived particle bombardment. Sectors were found in primordia of both vegetative and reproductive organs.
Bioinformatics | 2004
Andreas Gisel; Maria Panetta; Giorgio Grillo; Vito Flavio Licciulli; Sabino Liuni; Cecilia Saccone
SUMMARY DNAfan (DNA Feature ANalyzer) is a tool combining sequence-filtering and pattern searching. DNAfan automatically extracts user-defined sets of sequence fragments from large sequence sets. Fragments are defined by annotated gene feature keys and co- or non-occurring patterns within the feature or close to it. A gene feature parser and a pattern-based filter tool localizes and extracts the specific subset of sequences. The selected sequence data can subsequently be retrieved for analyses or further processed with DNAfan to find the occurrence of specific patterns or structural motifs. DNAfan is a powerful tool for pattern analysis. Its filter features restricts the pattern search to a well-defined set of sequences, allowing drastic reduction in false positive hits. AVAILABILITY http://bighost.ba.itb.cnr.it:8080/Framework.
BMC Bioinformatics | 2007
Angelica Tulipano; Giacinto Donvito; Flavio Licciulli; Giorgio Maggi; Andreas Gisel
BackgroundTo date more than 2,1 million gene products from more than 100000 different species have been described specifying their function, the processes they are involved in and their cellular localization using a very well defined and structured vocabulary, the gene ontology (GO). Such vast, well defined knowledge opens the possibility of compare gene products at the level of functionality, finding gene products which have a similar function or are involved in similar biological processes without relying on the conventional sequence similarity approach. Comparisons within such a large space of knowledge are highly data and computing intensive. For this reason this project was based upon the use of the computational GRID, a technology offering large computing and storage resources.ResultsWe have developed a tool, GEN e AnaloG ue FIN dE r (ENGINE) that parallelizes the search process and distributes the calculation and data over the computational GRID, splitting the process into many sub-processes and joining the calculation and the data on the same machine and therefore completing the whole search in about 3 days instead of occupying one single machine for more than 5 CPU years. The results of the functional comparison contain potential functional analogues for more than 79000 gene products from the most important species. 46% of the analyzed gene products are well enough described for such an analysis to individuate functional analogues, such as well-known members of the same gene family, or gene products with similar functions which would never have been associated by standard methods.ConclusionENGINE has produced a list of potential functionally analogous relations between gene products within and between species using, in place of the sequence, the gene description of the GO, thus demonstrating the potential of the GO. However, the current limiting factor is the quality of the associations of many gene products from non-model organisms that often have electronic associations, since experimental information is missing. With future improvements of the GO, this limit will be reduced. ENGINE will manifest its power when it is applied to the whole GODB of more than 2,1 million gene products from more than 100000 organisms. The data produced by this search is planed to be available as a supplement to the GO database as soon as we are able to provide regular updates.