Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andreas Göbel is active.

Publication


Featured researches published by Andreas Göbel.


ACM Transactions on Computation Theory | 2016

Counting Homomorphisms to Square-Free Graphs, Modulo 2

Andreas Göbel; Leslie Ann Goldberg; David Richerby

We study the problem ⊕HomsToH of counting, modulo 2, the homomorphisms from an input graph to a fixed undirected graph H. A characteristic feature of modular counting is that cancellations make wider classes of instances tractable than is the case for exact (nonmodular) counting; thus, subtle dichotomy theorems can arise. We show the following dichotomy: for any H that contains no 4-cycles, ⊕HomsToH is either in polynomial time or is ⊕P-complete. This partially confirms a conjecture of Faben and Jerrum that was previously only known to hold for trees and for a restricted class of tree-width-2 graphs called cactus graphs. We confirm the conjecture for a rich class of graphs, including graphs of unbounded tree-width. In particular, we focus on square-free graphs, which are graphs without 4-cycles. These graphs arise frequently in combinatorics, for example, in connection with the strong perfect graph theorem and in certain graph algorithms. Previous dichotomy theorems required the graph to be tree-like so that tree-like decompositions could be exploited in the proof. We prove the conjecture for a much richer class of graphs by adopting a much more general approach.


ACM Transactions on Computation Theory | 2014

The complexity of counting homomorphisms to cactus graphs modulo 2

Andreas Göbel; Leslie Ann Goldberg; David Richerby

A homomorphism from a graph G to a graph H is a function from V(G) to V(H) that preserves edges. Many combinatorial structures that arise in mathematics and in computer science can be represented naturally as graph homomorphisms and as weighted sums of graph homomorphisms. In this article, we study the complexity of counting homomorphisms modulo 2. The complexity of modular counting was introduced by Papadimitriou and Zachos and it has been pioneered by Valiant who famously introduced a problem for which counting modulo 7 is easy but counting modulo 2 is intractable. Modular counting provides a rich setting in which to study the structure of homomorphism problems. In this case, the structure of the graph H has a big influence on the complexity of the problem. Thus, our approach is graph-theoretic. We give a complete solution for the class of cactus graphs, which are connected graphs in which every edge belongs to at most one cycle. Cactus graphs arise in many applications such as the modelling of wireless sensor networks and the comparison of genomes. We show that, for some cactus graphs H, counting homomorphisms to H modulo 2 can be done in polynomial time. For every other fixed cactus graph H, the problem is complete in the complexity class ⊕P, which is a wide complexity class to which every problem in the polynomial hierarchy can be reduced (using randomised reductions). Determining which H lead to tractable problems can be done in polynomial time. Our result builds upon the work of Faben and Jerrum, who gave a dichotomy for the case in which H is a tree.


symposium on theoretical aspects of computer science | 2014

Counting Homomorphisms to Cactus Graphs Modulo 2

Andreas Göbel; Leslie Ann Goldberg; David Richerby

A homomorphism from a graph G to a graph H is a function from V(G) to V(H) that preserves edges. Many combinatorial structures that arise in mathematics and computer science can be represented naturally as graph homomorphisms and as weighted sums of graph homomorphisms. In this paper, we study the complexity of counting homomorphisms modulo 2. The complexity of modular counting was introduced by Papadimitriou and Zachos and it has been pioneered by Valiant who famously introduced a problem for which counting modulo 7 is easy but counting modulo 2 is intractable. Modular counting provides a rich setting in which to study the structure of homomorphism problems. In this case, the structure of the graph H has a big influence on the complexity of the problem. Thus, our approach is graph-theoretic. We give a complete solution for the class of cactus graphs, which are connected graphs in which every edge belongs to at most one cycle. Cactus graphs arise in many applications such as the modelling of wireless sensor networks and the comparison of genomes. We show that, for some cactus graphs H, counting homomorphisms to H modulo 2 can be done in polynomial time. For every other fixed cactus graph H, the problem is complete for the complexity class +P which is a wide complexity class to which every problem in the polynomial hierarchy can be reduced (using randomised reductions). Determining which H lead to tractable problems can be done in polynomial time. Our result builds upon the work of Faben and Jerrum, who gave a dichotomy for the case in which H is a tree.


parallel problem solving from nature | 2018

Heavy-Tailed Mutation Operators in Single-Objective Combinatorial Optimization

Tobias Friedrich; Andreas Göbel; Francesco Quinzan; Markus Wagner

A core feature of evolutionary algorithms is their mutation operator. Recently, much attention has been devoted to the study of mutation operators with dynamic and non-uniform mutation rates. Following up on this line of work, we propose a new mutation operator and analyze its performance on the (1+1) Evolutionary Algorithm (EA). Our analyses show that this mutation operator competes with pre-existing ones, when used by the (1+1) EA on classes of problems for which results on the other mutation operators are available. We present a “jump” function for which the performance of the (1+1) EA using any static uniform mutation and any restart strategy can be worse than the performance of the (1+1) EA using our mutation operator with no restarts. We show that the (1+1) EA using our mutation operator finds a (1/3)-approximation ratio on any non-negative submodular function in polynomial time. This performance matches that of combinatorial local search algorithms specifically designed to solve this problem.


SIAM Journal on Computing | 2015

Counting List Matrix Partitions of Graphs

Andreas Göbel; Leslie Ann Goldberg; Colin McQuillan; David Richerby; Tomoyuki Yamakami


mathematical foundations of computer science | 2018

Counting Homomorphisms to Trees Modulo a Prime.

Andreas Göbel; J. A. Gregor Lagodzinski; Karen Seidel


arXiv: Data Structures and Algorithms | 2018

Randomized Local Search Heuristics for Submodular Maximization and Covering Problems: Benefits of Heavy-tailed Mutation Operators.

Tobias Friedrich; Andreas Göbel; Francesco Quinzan; Markus Wagner


international colloquium on automata languages and programming | 2016

Amplifiers for the Moran Process

Andreas Galanis; Andreas Göbel; Leslie Ann Goldberg; John Lapinskas; David Richerby

Collaboration


Dive into the Andreas Göbel's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge