Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andreas Hiltbrunner is active.

Publication


Featured researches published by Andreas Hiltbrunner.


Journal of Cell Biology | 2001

Targeting of an abundant cytosolic form of the protein import receptor at Toc159 to the outer chloroplast membrane

Andreas Hiltbrunner; Jörg Bauer; Pierre-Alexandre Vidi; Sibylle Infanger; Petra Weibel; Morten Hohwy; Felix Kessler

Chloroplast biogenesis requires the large-scale import of cytosolically synthesized precursor proteins. A trimeric translocon (Toc complex) containing two homologous GTP-binding proteins (atToc33 and atToc159) and a channel protein (atToc75) facilitates protein translocation across the outer envelope membrane. The mechanisms governing function and assembly of the Toc complex are not yet understood. This study demonstrates that atToc159 and its pea orthologue exist in an abundant, previously unrecognized soluble form, and partition between cytosol-containing soluble fractions and the chloroplast outer membrane. We show that soluble atToc159 binds directly to the cytosolic domain of atToc33 in a homotypic interaction, contributing to the integration of atToc159 into the chloroplast outer membrane. The data suggest that the function of the Toc complex involves switching of atToc159 between a soluble and an integral membrane form.


Current Biology | 2005

Nuclear Accumulation of the Phytochrome A Photoreceptor Requires FHY1

Andreas Hiltbrunner; András Viczián; Erik Bury; Anke Tscheuschler; Stefan Kircher; Réka Tóth; Ariane Honsberger; Ferenc Nagy; Christian Fankhauser; Eberhard Schäfer

The phytochrome family of red/far-red (R/FR)-responsive photoreceptors plays a key role throughout the life cycle of plants . Arabidopsis has five phytochromes, phyA-phyE, among which phyA and phyB play the most predominant functions . Light-regulated nuclear accumulation of the phytochromes is an important regulatory step of this pathway, but to this date no factor specifically required for this event has been identified . Among all phyA signaling mutants, fhy1 and fhy3 (far-red elongated hypocotyl 1 and 3) have the most severe hyposensitive phenotype, indicating that they play particularly important roles . FHY1 is a small plant-specific protein of unknown function localized both in the nucleus and the cytoplasm . Here we show that FHY1 is specifically required for the light-regulated nuclear accumulation of phyA but not phyB. Moreover, phyA accumulation is only slightly affected in fhy3, indicating that the diminished nuclear accumulation of phyA observed in fhy1 seedlings is not simply a general consequence of reduced phyA signaling. By in vitro pull-down and yeast two-hybrid analyses, we demonstrate that FHY1 physically interacts with phyA, preferentially in its active Pfr form. Furthermore, FHY1 and phyA colocalize in planta. We therefore identify the first component required for light-regulated phytochrome nuclear accumulation.


The Plant Cell | 2015

Light-Activated Phytochrome A and B Interact with Members of the SPA Family to Promote Photomorphogenesis in Arabidopsis by Reorganizing the COP1/SPA Complex

David J. Sheerin; Chiara Menon; Sven zur Oven-Krockhaus; Beatrix Enderle; Ling Zhu; Philipp Johnen; Frank Schleifenbaum; York-Dieter Stierhof; Enamul Huq; Andreas Hiltbrunner

SPA proteins interact with phyA and phyB within nuclear bodies; light-induced binding of phyA and phyB to SPA proteins likely disrupts direct interaction of COP1 and SPAs, resulting in initiation of photomorphogenic development. Phytochromes function as red/far-red photoreceptors in plants and are essential for light-regulated growth and development. Photomorphogenesis, the developmental program in light, is the default program in seed plants. In dark-grown seedlings, photomorphogenic growth is suppressed by the action of the CONSTITUTIVELY PHOTOMORPHOGENIC1 (COP1)/SUPPRESSOR OF phyA-105 (SPA) complex, which targets positive regulators of photomorphogenic growth for degradation by the proteasome. Phytochromes inhibit the COP1/SPA complex, leading to the accumulation of transcription factors promoting photomorphogenesis; yet, the mechanism by which they inactivate COP1/SPA is still unknown. Here, we show that light-activated phytochrome A (phyA) and phytochrome B (phyB) interact with SPA1 and other SPA proteins. Fluorescence resonance energy transfer-fluorescence lifetime imaging microscopy analyses show that SPAs and phytochromes colocalize and interact in nuclear bodies. Furthermore, light-activated phyA and phyB disrupt the interaction between COP1 and SPAs, resulting in reorganization of the COP1/SPA complex in planta. The light-induced stabilization of HFR1, a photomorphogenic factor targeted for degradation by COP1/SPA, correlates temporally with the accumulation of phyA in the nucleus and localization of phyA to nuclear bodies. Overall, these data provide a molecular mechanism for the inactivation of the COP1/SPA complex by phyA- and phyB-mediated light perception.


Science | 2016

Phytochrome B integrates light and temperature signals in Arabidopsis

Martina Legris; Cornelia Klose; E. Sethe Burgie; Cecilia Costigliolo Rojas Rojas; Maximiliano Neme; Andreas Hiltbrunner; Philip A. Wigge; Eberhard Schäfer; Richard D. Vierstra; Jorge J. Casal

Combining heat and light responses Plants integrate a variety of environmental signals to regulate growth patterns. Legris et al. and Jung et al. analyzed how the quality of light is interpreted through ambient temperature to regulate transcription and growth (see the Perspective by Halliday and Davis). The phytochromes responsible for reading the ratio of red to far-red light were also responsive to the small shifts in temperature that occur when dusk falls or when shade from neighboring plants cools the soil. Science, this issue p. 897, p. 886; see also p. 832 Red-light photoreceptors also act as temperature sensors in plants. Ambient temperature regulates many aspects of plant growth and development, but its sensors are unknown. Here, we demonstrate that the phytochrome B (phyB) photoreceptor participates in temperature perception through its temperature-dependent reversion from the active Pfr state to the inactive Pr state. Increased rates of thermal reversion upon exposing Arabidopsis seedlings to warm environments reduce both the abundance of the biologically active Pfr-Pfr dimer pool of phyB and the size of the associated nuclear bodies, even in daylight. Mathematical analysis of stem growth for seedlings expressing wild-type phyB or thermally stable variants under various combinations of light and temperature revealed that phyB is physiologically responsive to both signals. We therefore propose that in addition to its photoreceptor functions, phyB is a temperature sensor in plants.


PLOS Genetics | 2008

FHY1 mediates nuclear import of the light-activated phytochrome A photoreceptor.

Thierry Genoud; Fabian Schweizer; Anke Tscheuschler; Dimitry Debrieux; Jorge J. Casal; Eberhard Schäfer; Andreas Hiltbrunner; Christian Fankhauser

The phytochrome (phy) family of photoreceptors is of crucial importance throughout the life cycle of higher plants. Light-induced nuclear import is required for most phytochrome responses. Nuclear accumulation of phyA is dependent on two related proteins called FHY1 (Far-red elongated HYpocotyl 1) and FHL (FHY1 Like), with FHY1 playing the predominant function. The transcription of FHY1 and FHL are controlled by FHY3 (Far-red elongated HYpocotyl 3) and FAR1 (FAr-red impaired Response 1), a related pair of transcription factors, which thus indirectly control phyA nuclear accumulation. FHY1 and FHL preferentially interact with the light-activated form of phyA, but the mechanism by which they enable photoreceptor accumulation in the nucleus remains unsolved. Sequence comparison of numerous FHY1-related proteins indicates that only the NLS located at the N-terminus and the phyA-interaction domain located at the C-terminus are conserved. We demonstrate that these two parts of FHY1 are sufficient for FHY1 function. phyA nuclear accumulation is inhibited in the presence of high levels of FHY1 variants unable to enter the nucleus. Furthermore, nuclear accumulation of phyA becomes light- and FHY1-independent when an NLS sequence is fused to phyA, strongly suggesting that FHY1 mediates nuclear import of light-activated phyA. In accordance with this idea, FHY1 and FHY3 become functionally dispensable in seedlings expressing a constitutively nuclear version of phyA. Our data suggest that the mechanism uncovered in Arabidopsis is conserved in higher plants. Moreover, this mechanism allows us to propose a model explaining why phyA needs a specific nuclear import pathway.


Cell | 2011

Photoconversion and Nuclear Trafficking Cycles Determine Phytochrome A's Response Profile to Far-Red Light

Julia Rausenberger; Anke Tscheuschler; Wiebke Nordmeier; Florian Wüst; Jens Timmer; Eberhard Schäfer; Christian Fleck; Andreas Hiltbrunner

Phytochrome A (phyA) is the only photoreceptor in plants, initiating responses in far-red light and, as such, essential for survival in canopy shade. Although the absorption and the ratio of active versus total phyA are maximal in red light, far-red light is the most efficient trigger of phyA-dependent responses. Using a joint experimental-theoretical approach, we unravel the mechanism underlying this shift of the phyA action peak from red to far-red light and show that it relies on specific molecular interactions rather than on intrinsic changes to phyAs spectral properties. According to our model, the dissociation rate of the phyA-FHY1/FHL nuclear import complex is a principle determinant of the phyA action peak. The findings suggest how higher plants acquired the ability to sense far-red light from an ancestral photoreceptor tuned to respond to red light.


Journal of Biological Chemistry | 2003

Dimerization of Toc-GTPases at the Chloroplast Protein Import Machinery

Petra Weibel; Andreas Hiltbrunner; Lukas Brand; Felix Kessler

Import of chloroplast precursor proteins is controlled by the coordinate action of two homologous GTPases, Toc159 and Toc33, located at the cytosol-outer membrane interface. Recent studies in Arabidopsis showed that the cytosolic form of the precursor binding protein Toc159 is targeted to its receptor at the import machinery, Toc33, via heterodimerization of their GTP-binding domains. Toc33 may also form GDP-bound homodimers, as suggested by the crystal structure of its pea ortholog. Moreover, the structural data suggested that arginine 130 (Arg130) of Arabidopsis Toc33 may function as a GTPase-activating “arginine-finger” at the other monomer in the Toc33 dimer. Here, we demonstrate that Arg130 of Toc33 does not function as an Arginine-finger. A mutant, Toc33-R130A, binds and hydrolyzes GTP like the wild type. However, we demonstrate that Arg130 is involved in both homodimerization of Toc33 and in heterodimerization with the GTP-binding domain of Toc159. The dependence of Toc33 homodimerization on Arg130 is mutual, requiring the presence of Arg130 at both monomers. As the GTPase is not activated by dimerization, it may be activated independently at either monomer, possibly even before dimerization. Independent regulation of GTPase activity may serve to coordinate the interactions of the GTPases during the import of proteins into the chloroplast.


Plant Molecular Biology | 2004

AtToc90, a New GTP-Binding Component of the Arabidopsis Chloroplast Protein Import Machinery

Andreas Hiltbrunner; Kathrin Grünig; Mayte Alvarez-Huerta; Sibylle Infanger; Jörg Bauer; Felix Kessler

AtToc159 is a GTP-binding chloroplast protein import receptor. In vivo, atToc159 is required for massive accumulation of photosynthetic proteins during chloroplast biogenesis. Yet, in mutants lacking atToc159 photosynthetic proteins still accumulate, but at strongly reduced levels whereas non-photosynthetic proteins are imported normally: This suggests a role for the homologues of atToc159 (atToc132, -120 and -90). Here, we show that atToc90 supports accumulation of photosynthetic proteins in plastids, but is not required for import of several constitutive proteins. Part of atToc90 associates with the chloroplast surface in vivo and with the Toc-complex core components (atToc75 and atToc33)in vitro suggesting a function in chloroplast protein import similar to that of atToc159. As both proteins specifically contribute to the accumulation of photosynthetic proteins in chloroplasts they may be components of the same import pathway.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Interaction with plant transcription factors can mediate nuclear import of phytochrome B

Anne Pfeiffer; Marie-Kristin Nagel; Claudia Popp; Florian Wüst; János Bindics; András Viczián; Andreas Hiltbrunner; Ferenc Nagy; Tim Kunkel; Eberhard Schäfer

Phytochromes (phy) are red/far-red–absorbing photoreceptors that regulate the adaption of plant growth and development to changes in ambient light conditions. The nuclear transport of the phytochromes upon light activation is regarded as a key step in phytochrome signaling. Although nuclear import of phyA is regulated by the transport facilitators far red elongated hypocotyl 1 (FHY1) and fhy1-like, an intrinsic nuclear localization signal was proposed to be involved in the nuclear accumulation of phyB. We recently showed that nuclear import of phytochromes can be analyzed in a cell-free system consisting of isolated nuclei of the unicellular green algae Acetabularia acetabulum. We now show that this system is also versatile to elucidate the mechanism of the nuclear transport of phyB. We tested the nuclear transport characteristics of full-length phyB as well as N- and C-terminal phyB fragments in vitro and showed that the nuclear import of phyB can be facilitated by phytochrome-interacting factor 3 (PIF3). In vivo measurements of phyB nuclear accumulation in the absence of PIF1, -3, -4, and -5 indicate that these PIFs are the major transport facilitators during the first hours of deetiolation. Under prolonged irradiations additional factors might be responsible for phyB nuclear transport in the plant.


The Plant Cell | 2012

Nuclear Phytochrome A Signaling Promotes Phototropism in Arabidopsis

Chitose Kami; Micha Hersch; Martine Trevisan; Thierry Genoud; Andreas Hiltbrunner; Sven Bergmann; Christian Fankhauser

This article shows that the phytochrome A photoreceptor promotes reorientation of the hypocotyl toward blue light (phototropism) by regulating the expression of nuclear genes. It also shows that phytochrome A nuclear signaling events still operate in a mutant where phytochrome A does not significantly accumulate in the nucleus. Phototropin photoreceptors (phot1 and phot2 in Arabidopsis thaliana) enable responses to directional light cues (e.g., positive phototropism in the hypocotyl). In Arabidopsis, phot1 is essential for phototropism in response to low light, a response that is also modulated by phytochrome A (phyA), representing a classical example of photoreceptor coaction. The molecular mechanisms underlying promotion of phototropism by phyA remain unclear. Most phyA responses require nuclear accumulation of the photoreceptor, but interestingly, it has been proposed that cytosolic phyA promotes phototropism. By comparing the kinetics of phototropism in seedlings with different subcellular localizations of phyA, we show that nuclear phyA accelerates the phototropic response, whereas in the fhy1 fhl mutant, in which phyA remains in the cytosol, phototropic bending is slower than in the wild type. Consistent with this data, we find that transcription factors needed for full phyA responses are needed for normal phototropism. Moreover, we show that phyA is the primary photoreceptor promoting the expression of phototropism regulators in low light (e.g., PHYTOCHROME KINASE SUBSTRATE1 [PKS1] and ROOT PHOTO TROPISM2 [RPT2]). Although phyA remains cytosolic in fhy1 fhl, induction of PKS1 and RPT2 expression still occurs in fhy1 fhl, indicating that a low level of nuclear phyA signaling is still present in fhy1 fhl.

Collaboration


Dive into the Andreas Hiltbrunner's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ferenc Nagy

Hungarian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

András Viczián

Hungarian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Felix Kessler

University of Neuchâtel

View shared research outputs
Top Co-Authors

Avatar

Anja Possart

University of Tübingen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge