Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andreas Holzenburg is active.

Publication


Featured researches published by Andreas Holzenburg.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Core-controlled polymorphism in virus-like particles

Jingchuan Sun; Chris Dufort; Marie-Christine Daniel; Ayaluru Murali; Chao Chen; Kodetham Gopinath; Barry E. Stein; Mrinmoy De; Vincent M. Rotello; Andreas Holzenburg; C. Cheng Kao; Bogdan Dragnea

This study concerns the self-assembly of virus-like particles (VLPs) composed of an icosahedral virus protein coat encapsulating a functionalized spherical nanoparticle core. The recent development of efficient methods for VLP self-assembly has opened the way to structural studies. Using electron microscopy with image reconstruction, the structures of several VLPs obtained from brome mosaic virus capsid proteins and gold nanoparticles were elucidated. Varying the gold core diameter provides control over the capsid structure. The number of subunits required for a complete capsid increases with the core diameter. The packaging efficiency is a function of the number of capsid protein subunits per gold nanoparticle. VLPs of varying diameters were found to resemble to three classes of viral particles found in cells (T = 1, 2, and 3). As a consequence of their regularity, VLPs form three-dimensional crystals under the same conditions as the wild-type virus. The crystals represent a form of metallodielectric material that exhibits optical properties influenced by multipolar plasmonic coupling.


Proceedings of the National Academy of Sciences of the United States of America | 2003

Crystal structure of Mycobacterium tuberculosis SecA, a preprotein translocating ATPase

Vivek Sharma; Arulandu Arockiasamy; Donald R. Ronning; Christos G. Savva; Andreas Holzenburg; Miriam Braunstein; William R. Jacobs; James C. Sacchettini

In bacteria, the majority of exported proteins are translocated by the Sec system, which recognizes the signal sequence of a preprotein and uses ATP and the proton motive force to mediate protein translocation across the cytoplasmic membrane. SecA is an essential protein component of this system, containing the molecular motor that facilitates translocation. Here we report the three-dimensional structure of the SecA protein of Mycobacterium tuberculosis. Each subunit of the homodimer contains a “motor” domain and a translocation domain. The structure predicts that SecA can interact with the SecYEG pore and function as a molecular ratchet that uses ATP hydrolysis for physical movement of the preprotein. Knowledge of this structure provides a framework for further elucidation of the translocation process.


Molecular Microbiology | 2005

The Mycobacterium tuberculosis iniA gene is essential for activity of an efflux pump that confers drug tolerance to both isoniazid and ethambutol

Roberto Colangeli; Danica Helb; Sudharsan Sridharan; Jingchuan Sun; Mandira Varma‐Basil; Manzour Hernando Hazbón; Ryhor Harbacheuski; Nicholas J. Megjugorac; William R. Jacobs; Andreas Holzenburg; James C. Sacchettini; David Alland

Little is known about the intracellular events that occur following the initial inhibition of Mycobacterium tuberculosis by the first‐line antituberculosis drugs isoniazid (INH) and ethambutol (EMB). Understanding these pathways should provide significant insights into the adaptive strategies M. tuberculosis undertakes to survive antibiotics. We have discovered that the M. tuberculosis iniA gene (Rv 0342) participates in the development of tolerance to both INH and EMB. This gene is strongly induced along with iniB and iniC (Rv 0341 and Rv 0343) by treatment of Mycobacterium bovis BCG or M. tuberculosis with INH or EMB. BCG strains overexpressing M. tuberculosis iniA grew and survived longer than control strains upon exposure to inhibitory concentrations of either INH or EMB. An M. tuberculosis strain containing an iniA deletion showed increased susceptibility to INH. Additional studies showed that overexpression of M. tuberculosis iniA in BCG conferred resistance to ethidium bromide, and the deletion of iniA in M. tuberculosis resulted in increased accumulation of intracellular ethidium bromide. The pump inhibitor reserpine reversed both tolerance to INH and resistance to ethidium bromide in BCG. These results suggest that iniA functions through an MDR‐pump like mechanism, although IniA does not appear to directly transport INH from the cell. Analysis of two‐dimensional crystals of the IniA protein revealed that this predicted transmembrane protein forms multimeric structures containing a central pore, providing further evidence that iniA is a pump component. Our studies elucidate a potentially unique adaptive pathway in mycobacteria. Drugs designed to inhibit the iniA gene product may shorten the time required to treat tuberculosis and may help prevent the clinical emergence of drug resistance.


Journal of Biological Chemistry | 2007

Effects of Single Nucleotide Polymorphisms on Toll-like Receptor 3 Activity and Expression in Cultured Cells

C. T. Ranjith-Kumar; William M. Miller; Jingchuan Sun; Jin Xiong; Jon Santos; Ian Yarbrough; Roberta Lamb; Juliane Mills; Karen E. Duffy; Scott Hoose; Mark Cunningham; Andreas Holzenburg; M. Lamine Mbow; Robert T. Sarisky; C. Cheng Kao

Recognition of double-stranded RNA by Toll-like receptor 3 (TLR3) will increase the production of cytokines and chemokines through transcriptional activation by the NF-κB protein. Over 136 single-nucleotide polymorphisms (SNPs) in TLR3 have been identified in the human population. Of these, four alter the sequence of the TLR3 protein. Molecular modeling suggests that two of the SNPs, N284I and L412F, could affect the packing of the leucine-rich repeating units in TLR3. Notably, L412F is reported to be present in 20% of the population and is higher in the asthmatic population. To examine whether the four SNPs affect TLR3 function, each were cloned and tested for their ability to activate the expression of TLR3-dependent reporter constructs. SNP N284I was nearly completely defective for activating reporter activity, and L412F was reduced in activity. These two SNPs did not obviously affect the level of TLR3 expression or their intracellular location in vesicles. However, N284I and L412F were underrepresented on the cell surface, as determined by flow cytometry analysis, and were not efficiently secreted into the culture medium when expressed as the soluble ectodomain. They were also reduced in their ability to act in a dominant negative fashion on the wild type TLR3 allele. These observations suggest that N284I and L412F affect the activities of TLR3 needed for proper signaling.


Journal of Biological Chemistry | 2006

Structural and functional analyses of the human Toll-like receptor 3. Role of glycosylation.

Jingchuan Sun; Karen E. Duffy; C. T. Ranjith-Kumar; Jin Xiong; Roberta Lamb; Jon Santos; Hema Masarapu; Mark Cunningham; Andreas Holzenburg; Robert T. Sarisky; M. Lamine Mbow; Cheng Kao

Toll-like receptors (TLRs) play critical roles in bridging the innate and adaptive immune responses. The human TLR3 recognizes foreign-derived double-stranded RNA and endogenous necrotic cell RNA as ligands. Herein we characterized the contribution of glycosylation to TLR3 structure and function. Exogenous addition of purified extracellular domain of TLR3 (hTLR3 ECD) expressed in human embryonic kidney cells was found to inhibit TLR3-dependent signaling, thus providing a reagent for structural and functional characterization. Approximately 35% of the mass of the hTLR3 ECD was due to posttranslational modification, with N-linked glycosyl groups contributing substantially to the additional mass. Cells treated with tunicamycin, an inhibitor of glycosylation, prevented TLR3-induced NF-κB activation, confirming that N-linked glycosylation is required for bioactivity of this receptor. Further, mutations in two of these predicted glycosylation sites impaired TLR3 signaling without obviously affecting the expression of the protein. Single-particle structures reconstructed from electron microscopy images and two-dimensional crystallization revealed that hTLR3 ECD forms a horseshoe structure similar to the recently elucidated x-ray structure of the protein expressed in insect cells using baculovirus vectors (Choe, J., Kelker, M. S., and Wilson, I. A. (2005) Science 309, 581-585 and Bell, J. K., Botos, I., Hall, P. R., Askins, J., Shiloach, J., Segal, D. M., and Davies, D. R. (2005) Proc. Natl. Acad. Sci. U. S. A. 102, 10976-10980). There are, however, notable differences between the human cell-derived and insect cell-derived structures, including features attributable to glycosylation.


Eukaryotic Cell | 2012

Colony Organization in the Green Alga Botryococcus braunii (Race B) Is Specified by a Complex Extracellular Matrix

Taylor L. Weiss; Robyn Roth; Carrie Goodson; Stanislav Vitha; Ian Black; Parastoo Azadi; Jannette Rusch; Andreas Holzenburg; Timothy P. Devarenne; Ursula Goodenough

ABSTRACT Botryococcus braunii is a colonial green alga whose cells associate via a complex extracellular matrix (ECM) and produce prodigious amounts of liquid hydrocarbons that can be readily converted into conventional combustion engine fuels. We used quick-freeze deep-etch electron microscopy and biochemical/histochemical analysis to elucidate many new features of B. braunii cell/colony organization and composition. Intracellular lipid bodies associate with the chloroplast and endoplasmic reticulum (ER) but show no evidence of being secreted. The ER displays striking fenestrations and forms a continuous subcortical system in direct contact with the cell membrane. The ECM has three distinct components. (i) Each cell is surrounded by a fibrous β-1, 4- and/or β-1, 3-glucan-containing cell wall. (ii) The intracolonial ECM space is filled with a cross-linked hydrocarbon network permeated with liquid hydrocarbons. (iii) Colonies are enclosed in a retaining wall festooned with a fibrillar sheath dominated by arabinose-galactose polysaccharides, which sequesters ECM liquid hydrocarbons. Each cell apex associates with the retaining wall and contributes to its synthesis. Retaining-wall domains also form “drapes” between cells, with some folding in on themselves and penetrating the hydrocarbon interior of a mother colony, partitioning it into daughter colonies. We propose that retaining-wall components are synthesized in the apical Golgi apparatus, delivered to apical ER fenestrations, and assembled on the surfaces of apical cell walls, where a proteinaceous granular layer apparently participates in fibril morphogenesis. We further propose that hydrocarbons are produced by the nonapical ER, directly delivered to the contiguous cell membrane, and pass across the nonapical cell wall into the hydrocarbon-based ECM.


Journal of Biological Chemistry | 2008

Structure and Function of LGP2, a DEX(D/H) Helicase That Regulates the Innate Immunity Response

Ayaluru Murali; Xiaojun Li; C. T. Ranjith-Kumar; Kanchan Bhardwaj; Andreas Holzenburg; Pingwei Li; C. Cheng Kao

RNA recognition receptors are important for detection of and response to viral infections. RIG-I and MDA5 are cytoplasmic DEX(D/H) helicase proteins that can induce signaling in response to RNA ligands, including those from viral infections. LGP2, a homolog of RIG-I and MDA5 without the caspase recruitment domain required for signaling, plays an important role in modulating signaling by MDA5 and RIG-I, presumably through heterocomplex formation and/or by serving as a sink for RNAs. Here we demonstrate that LGP2 can be coexpressed with RIG-I to inhibit activation of the NF-κB reporter expression and that LGP2 protein produced in insect cells can bind both single- and double-stranded RNA (dsRNA), with higher affinity and cooperativity for dsRNA. Electron microscopy and image reconstruction were used to determine the shape of the LGP2 monomer in the absence of dsRNA and of the dimer complexed to a 27-bp dsRNA. LGP2 has striking structural similarity to the helicase domain of the superfamily 2 DNA helicase, Hef.


Journal of the Science of Food and Agriculture | 2012

Physical barriers to carotenoid bioaccessibility. Ultrastructure survey of chromoplast and cell wall morphology in nine carotenoid-containing fruits and vegetables.

Jennifer Jeffery; Andreas Holzenburg; Stephen R. King

BACKGROUND The ultrastructural characterisation of cellular components is a key element in revealing the bases for differences in nutrient bioaccessibility among fruits and vegetables and their derived products. Together, cell walls and chromoplasts constitute the two major physical barriers to carotenoid release from the food matrix (structure) during digestion. In general, larger cells with thinner cell walls are most likely to fail under mechanical pressure. In relation to chromoplasts, the substructures plastoglobuli, crystals and membranes give decreasing rates of carotenoid solubilisation when exposed to digestive forces. RESULTS This paper describes cell wall and chromoplast structures in nine carotenoid-storing raw fruits and vegetables. Watermelon and melon cells were shown to have the largest cells concomitant with thin, non-fibrous cell walls, while carrot, hypodermal grapefruit and sweet potato cells were smallest with fibrous or dense cell walls. Mango fruit showed the highest proportion of globules to other substructures. Carrot, papaya and tomato contained many crystalline structures. Finally, watermelon, mango and butternut squash developed a high proportion of membranous structures. CONCLUSION A more precise description of the physical characteristics of foods that stand as barriers to bioaccessibility can help in understanding which are more or less inhibitory for particular foods.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Holin triggering in real time

Rebecca L. White; Shinobu Chiba; Ting Pang; Jill S. Dewey; Christos G. Savva; Andreas Holzenburg; Kit Pogliano; Ry Young

During λ infections, the holin S105 accumulates harmlessly in the membrane until, at an allele-specific time, suddenly triggering to form irregular holes of unprecedented size (>300 nm), releasing the endolysin from the cytoplasm, resulting in lysis within seconds. Here we used a functional S105–GFP chimera and real-time deconvolution fluorescence microscopy to show that the S105–GFP fusion accumulated in a uniformly distributed fashion, until suddenly, within 1 min, it formed aggregates, or rafts, at the time of lethal triggering. Moreover, the isogenic fusion to a nonlethal S105 mutant remained uniformly distributed, whereas a fusion to an early-lysing mutant showed early triggering and early raft formation. Protein accumulation rates of the WT, early, and nonlethal alleles were identical. Fluorescence recovery after photobleaching (FRAP) revealed that the nonlethal mutant and untriggered WT hybrids were highly mobile in the membrane, whereas the WT raft was essentially immobile. Finally, an antiholin allele, S105ΔTMD1–mcherryfp, in the product of which the S105 sequence deleted for the first transmembrane domain was fused to mCherryFP. This hybrid retained full antiholin activity, in that it blocked lethal hole formation by the S105–GFP fusion, accumulated uniformly throughout the host membrane and prevented the S105–GFP protein from forming rafts. These findings suggest that phage lysis occurs when the holin reaches a critical concentration and nucleates to form rafts, analogous to the initiation of purple membrane formation after the induction of bacteriorhodopsin in halobacteria. This model for holin function may be relevant for processes in mammalian cells, including the release of nonenveloped viruses and apoptosis.


Journal of Biological Chemistry | 2010

Raman Spectroscopy Analysis of Botryococcene Hydrocarbons from the Green Microalga Botryococcus braunii

Taylor L. Weiss; Hye Jin Chun; Shigeru Okada; Stanislav Vitha; Andreas Holzenburg; Jaan Laane; Timothy P. Devarenne

Botryococcus braunii, B race is a unique green microalga that produces large amounts of liquid hydrocarbons known as botryococcenes that can be used as a fuel for internal combustion engines. The simplest botryococcene (C30) is metabolized by methylation to give intermediates of C31, C32, C33, and C34, with C34 being the predominant botryococcene in some strains. In the present work we have used Raman spectroscopy to characterize the structure of botryococcenes in an attempt to identify and localize botryococcenes within B. braunii cells. The spectral region from 1600–1700 cm−1 showed ν(C=C) stretching bands specific for botryococcenes. Distinct botryococcene Raman bands at 1640 and 1647 cm−1 were assigned to the stretching of the C=C bond in the botryococcene branch and the exomethylene C=C bonds produced by the methylations, respectively. A Raman band at 1670 cm−1 was assigned to the backbone C=C bond stretching. Density function theory calculations were used to determine the Raman spectra of all botryococcenes to compare computed theoretical values with those observed. The analysis showed that the ν(C=C) stretching bands at 1647 and 1670 cm−1 are actually composed of several closely spaced bands arising from the six individual C=C bonds in the molecule. We also used confocal Raman microspectroscopy to map the presence and location of methylated botryococcenes within a colony of B. braunii cells based on the methylation-specific 1647 cm−1 botryococcene Raman shift.

Collaboration


Dive into the Andreas Holzenburg's collaboration.

Top Co-Authors

Avatar

Robert C. Ford

University of Manchester

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge