Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andreas J. Heinrich is active.

Publication


Featured researches published by Andreas J. Heinrich.


Science | 2006

Spin Coupling in Engineered Atomic Structures

Cyrus F. Hirjibehedin; Christopher P. Lutz; Andreas J. Heinrich

We used a scanning tunneling microscope to probe the interactions between spins in individual atomic-scale magnetic structures. Linear chains of 1 to 10 manganese atoms were assembled one atom at a time on a thin insulating layer, and the spin excitation spectra of these structures were measured with inelastic electron tunneling spectroscopy. We observed excitations of the coupled atomic spins that can change both the total spin and its orientation. Comparison with a model spin-interaction Hamiltonian yielded the collective spin configuration and the strength of the coupling between the atomic spins.


Science | 2012

Bistability in Atomic-Scale Antiferromagnets

Sebastian Loth; Susanne Baumann; Christopher P. Lutz; D. M. Eigler; Andreas J. Heinrich

Structured Memories High-density magnetic memory is generally produced by using ferromagnetic materials. As the density increases and the memory elements become closer together, stray fields can result in cross-talk and a corruption of the stored information. Antiferromagetic structures, however, are expected to be relatively insensitive to magnetic fields and so should, in principle, allow the elements to be packed in even closer. Loth et al. (p. 196) carried out low-temperature experiments to construct antiferromagnetic structures atom by atom. Electrical switching of the magnetic states was observed, and data could be robustly stored on the structure for several hours, albeit at low temperature. Atomically engineered antiferromagnets consisting of a few atoms exhibit stable magnetic states at low temperature. Control of magnetism on the atomic scale is becoming essential as data storage devices are miniaturized. We show that antiferromagnetic nanostructures, composed of just a few Fe atoms on a surface, exhibit two magnetic states, the Néel states, that are stable for hours at low temperature. For the smallest structures, we observed transitions between Néel states due to quantum tunneling of magnetization. We sensed the magnetic states of the designed structures using spin-polarized tunneling and switched between them electrically with nanosecond speed. Tailoring the properties of neighboring antiferromagnetic nanostructures enables a low-temperature demonstration of dense nonvolatile storage of information.


Science | 2007

Large magnetic anisotropy of a single atomic spin embedded in a surface molecular network.

Cyrus F. Hirjibehedin; Chiung-Yuan Lin; A. F. Otte; Markus Ternes; Christopher P. Lutz; B. A. Jones; Andreas J. Heinrich

Magnetic anisotropy allows magnets to maintain their direction of magnetization over time. Using a scanning tunneling microscope to observe spin excitations, we determined the orientation and strength of the anisotropies of individual iron and manganese atoms on a thin layer of copper nitride. The relative intensities of the inelastic tunneling processes are consistent with dipolar interactions, as seen for inelastic neutron scattering. First-principles calculations indicate that the magnetic atoms become incorporated into a polar covalent surface molecular network in the copper nitride. These structures, which provide atom-by-atom accessibility via local probes, have the potential for engineering anisotropies large enough to produce stable magnetization at low temperatures for a single atomic spin.


Science | 2008

The Force Needed to Move an Atom on a Surface

Markus Ternes; Christopher P. Lutz; Cyrus F. Hirjibehedin; Franz J. Giessibl; Andreas J. Heinrich

Manipulation of individual atoms and molecules by scanning probe microscopy offers the ability of controlled assembly at the single-atom scale. However, the driving forces behind atomic manipulation have not yet been measured. We used an atomic force microscope to measure the vertical and lateral forces exerted on individual adsorbed atoms or molecules by the probe tip. We found that the force that it takes to move an atom depends strongly on the adsorbate and the surface. Our results indicate that for moving metal atoms on metal surfaces, the lateral force component plays the dominant role. Furthermore, measuring spatial maps of the forces during manipulation yielded the full potential energy landscape of the tip-sample interaction.


Science | 2010

Measurement of fast electron spin relaxation times with atomic resolution.

Sebastian Loth; Markus Etzkorn; Christopher P. Lutz; D. M. Eigler; Andreas J. Heinrich

In a Spin The relaxation dynamics of electron spins in solid-state systems is of crucial importance for their usage in quantum computation and information storage. The interaction of the spin with its local environment results in lifetimes in the pico- to microsecond range. Thus, high temporal and spatial resolutions are needed to measure the relaxation time with atomic precision. Loth et al. (p. 1628, see the cover; see the Perspective by Morgenstern) used a scanning tunneling microscope with a spin-polarized tip to monitor the electron spin relaxation times of individual atoms adsorbed on a surface. A spin was excited by a pump signal, and its state read out after a variable time delay with a weak probe pulse that produced a spin-sensitive tunneling current. This general technique may be applicable to other systems with fast dynamics. Scanning tunneling microscopy is used to monitor the fast relaxation dynamics of an atomic spin adsorbed on a surface. Single spins in solid-state systems are often considered prime candidates for the storage of quantum information, and their interaction with the environment the main limiting factor for the realization of such schemes. The lifetime of an excited spin state is a sensitive measure of this interaction, but extending the spatial resolution of spin relaxation measurements to the atomic scale has been a challenge. We show how a scanning tunneling microscope can measure electron spin relaxation times of individual atoms adsorbed on a surface using an all-electronic pump-probe measurement scheme. The spin relaxation times of individual Fe-Cu dimers were found to vary between 50 and 250 nanoseconds. Our method can in principle be generalized to monitor the temporal evolution of other dynamical systems.


Science | 2014

Reaching the magnetic anisotropy limit of a 3d metal atom

Ileana G. Rau; Susanne Baumann; Stefano Rusponi; Fabio Donati; Sebastian Stepanow; Luca Gragnaniello; Jan Dreiser; Cinthia Piamonteze; F. Nolting; Shruba Gangopadhyay; Oliver R. Albertini; R. M. Macfarlane; Christopher P. Lutz; B. A. Jones; Pietro Gambardella; Andreas J. Heinrich; Harald Brune

Maximizing atomic magnetic memory A study of the magnetic response of cobalt atoms adsorbed on oxide surfaces may lead to much denser storage of data. In hard drives, data are stored as magnetic bits; the magnetic field pointing up or down corresponds to storing a zero or a one. The smallest bit possible would be a single atom, but the magnetism of a single atom —its spin—has to be stabilized by interactions with heavy elements or surfaces through an effect called spin-orbit coupling. Rau et al. (see the Perspective by Khajetoorians and Wiebe) built a model system in pursuit of single-atom bits—cobalt atoms adsorbed on magnesium oxide. At temperatures approaching absolute zero, the stabilization of the spins magnetic direction reached the maximum that is theoretically possible. Science, this issue p. 988; see also p. 976 A cobalt atom bound to a single oxygen site on magnesia has the maximum magnetic anisotropy allowed for a transition metal [Also see Perspective by Khajetoorians and Wiebe] Designing systems with large magnetic anisotropy is critical to realize nanoscopic magnets. Thus far, the magnetic anisotropy energy per atom in single-molecule magnets and ferromagnetic films remains typically one to two orders of magnitude below the theoretical limit imposed by the atomic spin-orbit interaction. We realized the maximum magnetic anisotropy for a 3d transition metal atom by coordinating a single Co atom to the O site of an MgO(100) surface. Scanning tunneling spectroscopy reveals a record-high zero-field splitting of 58 millielectron volts as well as slow relaxation of the Co atom’s magnetization. This striking behavior originates from the dominating axial ligand field at the O adsorption site, which leads to out-of-plane uniaxial anisotropy while preserving the gas-phase orbital moment of Co, as observed with x-ray magnetic circular dichroism.


Science | 2015

Electron paramagnetic resonance of individual atoms on a surface

Susanne Baumann; William Paul; Taeyoung Choi; Christopher P. Lutz; Arzhang Ardavan; Andreas J. Heinrich

EPR, one atom at a time Electron paramagnetic resonance (EPR) usually detects atoms with unpaired electrons as ensemble averages. Baumann et al. used a spin-polarized scanning tunneling microscope tip to measure EPR spectra of single iron atoms adsorbed on a magnesium oxide surface at cryogenic temperatures. The measurement depends on the atomic orbital symmetry; no signal was observed for cobalt atoms under the same conditions Science, this issue p. 417 The electron paramagnetic signal of individual iron atoms on an oxide surface is probed with a scanning tunneling microscope. We combined the high-energy resolution of conventional spin resonance (here ~10 nano–electron volts) with scanning tunneling microscopy to measure electron paramagnetic resonance of individual iron (Fe) atoms placed on a magnesium oxide film. We drove the spin resonance with an oscillating electric field (20 to 30 gigahertz) between tip and sample. The readout of the Fe atom’s quantum state was performed by spin-polarized detection of the atomic-scale tunneling magnetoresistance. We determine an energy relaxation time of T1 ≈ 100 microseconds and a phase-coherence time of T2 ≈ 210 nanoseconds. The spin resonance signals of different Fe atoms differ by much more than their resonance linewidth; in a traditional ensemble measurement, this difference would appear as inhomogeneous broadening.


Nature | 2017

Reading and writing single-atom magnets

Fabian D. Natterer; Kai Yang; William E. Paul; Philip Willke; Taeyoung Choi; Thomas Greber; Andreas J. Heinrich; Christopher P. Lutz

The single-atom bit represents the ultimate limit of the classical approach to high-density magnetic storage media. So far, the smallest individually addressable bistable magnetic bits have consisted of 3–12 atoms. Long magnetic relaxation times have been demonstrated for single lanthanide atoms in molecular magnets, for lanthanides diluted in bulk crystals, and recently for ensembles of holmium (Ho) atoms supported on magnesium oxide (MgO). These experiments suggest a path towards data storage at the atomic limit, but the way in which individual magnetic centres are accessed remains unclear. Here we demonstrate the reading and writing of the magnetism of individual Ho atoms on MgO, and show that they independently retain their magnetic information over many hours. We read the Ho states using tunnel magnetoresistance and write the states with current pulses using a scanning tunnelling microscope. The magnetic origin of the long-lived states is confirmed by single-atom electron spin resonance on a nearby iron sensor atom, which also shows that Ho has a large out-of-plane moment of 10.1 ± 0.1 Bohr magnetons on this surface. To demonstrate independent reading and writing, we built an atomic-scale structure with two Ho bits, to which we write the four possible states and which we read out both magnetoresistively and remotely by electron spin resonance. The high magnetic stability combined with electrical reading and writing shows that single-atom magnetic memory is indeed possible.


New Journal of Physics | 2010

Spin-polarized spin excitation spectroscopy

Sebastian Loth; Christopher P. Lutz; Andreas J. Heinrich

We report on the spin dependence of elastic and inelastic electron tunneling through transition metal atoms. Mn, Fe and Cu atoms were deposited onto a monolayer of Cu2N on Cu(100) and individually addressed with the probe tip of a scanning tunneling microscope. Electrons tunneling between the tip and the substrate exchange energy and spin angular momentum with the surface-bound magnetic atoms. The conservation of energy during the tunneling process results in a distinct onset threshold voltage above which the tunneling electrons create spin excitations in the Mn and Fe atoms. Here we show that the additional conservation of spin angular momentum leads to different cross-sections for spin excitations depending on the relative alignment of the surface spin and the spin of the tunneling electron. For this purpose, we developed a technique for measuring the same local spin with a spin-polarized and a non-spin-polarized tip by exchanging the last apex atom of the probe tip between different transition metal atoms. We derive a quantitative model describing the observed excitation cross-sections on the basis of an exchange scattering process.


Physical Review Letters | 2015

Origin of Perpendicular Magnetic Anisotropy and Large Orbital Moment in Fe Atoms on MgO

Susanne Baumann; Fabio Donati; Sebastian Stepanow; Stefano Rusponi; W. Paul; Shruba Gangopadhyay; Ileana G. Rau; Giulia E. Pacchioni; Luca Gragnaniello; Marina Pivetta; Jan Dreiser; Cinthia Piamonteze; Christopher P. Lutz; R. M. Macfarlane; B. A. Jones; Pietro Gambardella; Andreas J. Heinrich; Harald Brune

We report on the magnetic properties of individual Fe atoms deposited on MgO(100) thin films probed by x-ray magnetic circular dichroism and scanning tunneling spectroscopy. We show that the Fe atoms have strong perpendicular magnetic anisotropy with a zero-field splitting of 14.0±0.3  meV/atom. This is a factor of 10 larger than the interface anisotropy of epitaxial Fe layers on MgO and the largest value reported for Fe atoms adsorbed on surfaces. The interplay between the ligand field at the O adsorption sites and spin-orbit coupling is analyzed by density functional theory and multiplet calculations, providing a comprehensive model of the magnetic properties of Fe atoms in a low-symmetry bonding environment.

Collaboration


Dive into the Andreas J. Heinrich's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kai Yang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Cyrus F. Hirjibehedin

London Centre for Nanotechnology

View shared research outputs
Top Co-Authors

Avatar

Fabian D. Natterer

National Institute of Standards and Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge