Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andreas J.R. Habenicht is active.

Publication


Featured researches published by Andreas J.R. Habenicht.


Journal of Clinical Investigation | 2007

Monocyte subsets differentially employ CCR2, CCR5, and CX3CR1 to accumulate within atherosclerotic plaques

Frank Tacke; David Alvarez; Theodore J. Kaplan; Claudia V. Jakubzick; Rainer Spanbroek; Jaime Llodra; Alexandre Garin; Jianhua Liu; Matthias Mack; Nico van Rooijen; Sergio A. Lira; Andreas J.R. Habenicht; Gwendalyn J. Randolph

Monocytes participate critically in atherosclerosis. There are 2 major subsets expressing different chemokine receptor patterns: CCR2(+)CX3CR1(+)Ly-6C(hi) and CCR2(-)CX3CR1(++)Ly-6C(lo) monocytes. Both C-C motif chemokine receptor 2 (CCR2) and C-X(3)-C motif chemokine receptor 1 (CX3CR1) are linked to progression of atherosclerotic plaques. Here, we analyzed mouse monocyte subsets in apoE-deficient mice and traced their differentiation and chemokine receptor usage as they accumulated within atherosclerotic plaques. Blood monocyte counts were elevated in apoE(-/-) mice and skewed toward an increased frequency of CCR2(+)Ly-6C(hi) monocytes in apoE(-/-) mice fed a high-fat diet. CCR2(+)Ly-6C(hi) monocytes efficiently accumulated in plaques, whereas CCR2(-)Ly-6C(lo) monocytes entered less frequently but were more prone to developing into plaque cells expressing the dendritic cell-associated marker CD11c, indicating that phagocyte heterogeneity in plaques is linked to distinct types of entering monocytes. CCR2(-) monocytes did not rely on CX3CR1 to enter plaques. Instead, they were partially dependent upon CCR5, which they selectively upregulated in apoE(-/-) mice. By comparison, CCR2(+)Ly-6C(hi) monocytes unexpectedly required CX3CR1 in addition to CCR2 and CCR5 to accumulate within plaques. In many other inflammatory settings, these monocytes utilize CCR2, but not CX3CR1, for trafficking. Thus, antagonizing CX3CR1 may be effective therapeutically in ameliorating CCR2(+) monocyte recruitment to plaques without impairing their CCR2-dependent responses to inflammation overall.


Proceedings of the National Academy of Sciences of the United States of America | 2003

Expanding expression of the 5-lipoxygenase pathway within the arterial wall during human atherogenesis

Rainer Spanbroek; Rolf Gräbner; Katharina Lötzer; Markus Hildner; Anja Urbach; Katharina Rühling; Michael P. W. Moos; Brigitte Kaiser; Tina U. Cohnert; Thorsten Wahlers; Arthur W. Zieske; Gabriele Plenz; Horst Robenek; Peter Salbach; Hartmut Kühn; Olof Rådmark; Bengt Samuelsson; Andreas J.R. Habenicht

Oxidation products of low-density lipoproteins have been suggested to promote inflammation during atherogenesis, and reticulocyte-type 15-lipoxygenase has been implicated to mediate this oxidation. In addition, the 5-lipoxygenase cascade leads to formation of leukotrienes, which exhibit strong proinflammatory activities in cardiovascular tissues. Here, we studied both lipoxygenase pathways in human atherosclerosis. The 5-lipoxygenase pathway was abundantly expressed in arterial walls of patients afflicted with various lesion stages of atherosclerosis of the aorta and of coronary and carotid arteries. 5-lipoxygenase localized to macrophages, dendritic cells, foam cells, mast cells, and neutrophilic granulocytes, and the number of 5-lipoxygenase expressing cells markedly increased in advanced lesions. By contrast, reticulocyte-type 15-lipoxygenase was expressed at levels that were several orders of magnitude lower than 5-lipoxygenase in both normal and diseased arteries, and its expression could not be related to lesion pathology. Our data support a model of atherogenesis in which 5-lipoxygenase cascade-dependent inflammatory circuits consisting of several leukocyte lineages and arterial wall cells evolve within the blood vessel wall during critical stages of lesion development. They raise the possibility that antileukotriene drugs may be an effective treatment regimen in late-stage disease.


Nature Medicine | 2004

The 5-lipoxygenase pathway promotes pathogenesis of hyperlipidemia-dependent aortic aneurysm

Lei Zhao; Michael P. W. Moos; Rolf Gräbner; Frédérique Pédrono; Jinjin Fan; Brigitte Kaiser; Nicole John; Sandra Schmidt; Rainer Spanbroek; Katharina Lötzer; Li Huang; Jisong Cui; Daniel J. Rader; Jilly F. Evans; Andreas J.R. Habenicht; Colin D. Funk

Activation of the 5-lipoxygenase (5-LO) pathway leads to the biosynthesis of proinflammatory leukotriene lipid mediators. Genetic studies have associated 5-LO and its accessory protein, 5-LO-activating protein, with cardiovascular disease, myocardial infarction and stroke. Here we show that 5-LO-positive macrophages localize to the adventitia of diseased mouse and human arteries in areas of neoangiogenesis and that these cells constitute a main component of aortic aneurysms induced by an atherogenic diet containing cholate in mice deficient in apolipoprotein E. 5-LO deficiency markedly attenuates the formation of these aneurysms and is associated with reduced matrix metalloproteinase-2 activity and diminished plasma macrophage inflammatory protein-1α (MIP-1α; also called CCL3), but only minimally affects the formation of lipid-rich lesions. The leukotriene LTD4 strongly stimulates expression of MIP-1α in macrophages and MIP-2 (also called CXCL2) in endothelial cells. These data link the 5-LO pathway to hyperlipidemia-dependent inflammation of the arterial wall and to pathogenesis of aortic aneurysms through a potential chemokine intermediary route.


Journal of Clinical Investigation | 2007

Macrophages and neutrophils are the targets for immune suppression by glucocorticoids in contact allergy

Jan Tuckermann; Anna Kleiman; Richard Moriggl; Rainer Spanbroek; Anita Neumann; Anett Illing; Björn E. Clausen; Brenda D. Stride; Irmgard Förster; Andreas J.R. Habenicht; Holger M. Reichardt; François Tronche; Wolfgang Schmid; Günther Schütz

Glucocorticoids (GCs) are widely used in the treatment of allergic skin conditions despite having numerous side effects. Here we use Cre/loxP-engineered tissue- and cell-specific and function-selective GC receptor (GR) mutant mice to identify responsive cell types and molecular mechanisms underlying the antiinflammatory activity of GCs in contact hypersensitivity (CHS). CHS was repressed by GCs only at the challenge phase, i.e., during reexposure to the hapten. Inactivation of the GR gene in keratinocytes or T cells of mutant mice did not attenuate the effects of GCs, but its ablation in macrophages and neutrophils abolished downregulation of the inflammatory response. Moreover, mice expressing a DNA binding-defective GR were also resistant to GC treatment. The persistent infiltration of macrophages and neutrophils in these mice is explained by an impaired repression of inflammatory cytokines and chemokines such as IL-1beta, monocyte chemoattractant protein-1, macrophage inflammatory protein-2, and IFN-gamma-inducible protein 10. In contrast TNF-alpha repression remained intact. Consequently, injection of recombinant proteins of these cytokines and chemokines partially reversed suppression of CHS by GCs. These studies provide evidence that in contact allergy, therapeutic action of corticosteroids is in macrophages and neutrophils and that dimerization GR is required.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2005

The Lamina Adventitia Is the Major Site of Immune Cell Accumulation in Standard Chow-Fed Apolipoprotein E–Deficient Mice

Michael P. W. Moos; Nicole John; Rolf Gräbner; Silke Noßmann; Bernd Günther; Rüdiger Vollandt; Colin D. Funk; Brigitte Kaiser; Andreas J.R. Habenicht

Objective—Cells of adaptive immunity have been implicated in atherogenesis. Though substantial information is available on immune cells in atherosclerotic lesions of the lamina intima, cells in the lamina adventitia have received less attention. Methods and Results—The composition of immune cells in the innominate artery and abdominal aorta was examined in young, adult, and old apolipoprotein (apo) E−/− and wild-type mice on standard mouse chow. In the innominate artery of apoE−/− mice, adventitial T cells increased at 32, 52, and 78 weeks exceeding those of the intima by 6-, 24-, and 85-fold. Single T cells dominated in young mice, later T/B cell clusters emerged, and lymphoid-like structures reminiscent of inflammatory follicles formed preferentially in the abdominal aorta of old mice. Follicles contained organized sets of immune response-regulating cells: Interdigitating dendritic cells, T cell effectors, proliferating B cells, and plasma cells. Adventitial T cell inflammation was associated with a marked increase in transcripts of the chemokine MIP-1&agr; in the aorta but not in spleen or liver. Conclusions—Adventitial lymphocyte infiltration and formation of inflammatory follicle-like structures in the abdominal aorta of old apoE−/− mice point to the adventitia as a site of local adaptive immune reactions during atherogenesis in hyperlipidemic mice.


Journal of Immunology | 2012

Systemic Analysis of PPARγ in Mouse Macrophage Populations Reveals Marked Diversity in Expression with Critical Roles in Resolution of Inflammation and Airway Immunity

Emmanuel L. Gautier; Andrew Chow; Rainer Spanbroek; Genevieve Marcelin; Melanie Greter; Claudia Jakubzick; Milena Bogunovic; Marylene Leboeuf; Nico van Rooijen; Andreas J.R. Habenicht; Miriam Merad; Gwendalyn J. Randolph

Although peroxisome proliferator-activated receptor γ (PPARγ) has anti-inflammatory actions in macrophages, which macrophage populations express PPARγ in vivo and how it regulates tissue homeostasis in the steady state and during inflammation remains unclear. We now show that lung and spleen macrophages selectively expressed PPARγ among resting tissue macrophages. In addition, Ly-6Chi monocytes recruited to an inflammatory site induced PPARγ as they differentiated to macrophages. When PPARγ was absent in Ly-6Chi–derived inflammatory macrophages, initiation of the inflammatory response was unaffected, but full resolution of inflammation failed, leading to chronic leukocyte recruitment. Conversely, PPARγ activation favored resolution of inflammation in a macrophage PPARγ-dependent manner. In the steady state, PPARγ deficiency in red pulp macrophages did not induce overt inflammation in the spleen. By contrast, PPARγ deletion in lung macrophages induced mild pulmonary inflammation at the steady state and surprisingly precipitated mortality upon infection with Streptococcus pneumoniae. This accelerated mortality was associated with impaired bacterial clearance and inability to sustain macrophages locally. Overall, we uncovered critical roles for macrophage PPARγ in promoting resolution of inflammation and maintaining functionality in lung macrophages where it plays a pivotal role in supporting pulmonary host defense. In addition, this work identifies specific macrophage populations as potential targets for the anti-inflammatory actions of PPARγ agonists.


Immunity | 2015

Artery tertiary lymphoid organs control aorta immunity and protect against atherosclerosis via vascular smooth muscle cell Lymphotoxin β receptors

Desheng Hu; Sarajo Mohanta; Changjun Yin; Li Peng; Zhe Ma; Prasad Srikakulapu; Gianluca Grassia; Neil MacRitchie; G. Dever; Peter Gordon; Francis L. Burton; Armando Ialenti; Suleman R. Sabir; Iain B. McInnes; James M. Brewer; Paul Garside; Christian Weber; Thomas Lehmann; Daniel Teupser; Livia Habenicht; Michael Beer; Rolf Grabner; Pasquale Maffia; Falk Weih; Andreas J.R. Habenicht

Summary Tertiary lymphoid organs (TLOs) emerge during nonresolving peripheral inflammation, but their impact on disease progression remains unknown. We have found in aged Apoe−/− mice that artery TLOs (ATLOs) controlled highly territorialized aorta T cell responses. ATLOs promoted T cell recruitment, primed CD4+ T cells, generated CD4+, CD8+, T regulatory (Treg) effector and central memory cells, converted naive CD4+ T cells into induced Treg cells, and presented antigen by an unusual set of dendritic cells and B cells. Meanwhile, vascular smooth muscle cell lymphotoxin β receptors (VSMC-LTβRs) protected against atherosclerosis by maintaining structure, cellularity, and size of ATLOs though VSMC-LTβRs did not affect secondary lymphoid organs: Atherosclerosis was markedly exacerbated in Apoe−/−Ltbr−/− and to a similar extent in aged Apoe−/−Ltbrfl/flTagln-cre mice. These data support the conclusion that the immune system employs ATLOs to organize aorta T cell homeostasis during aging and that VSMC-LTβRs participate in atherosclerosis protection via ATLOs.


Circulation Research | 2014

Artery Tertiary Lymphoid Organs Contribute to Innate and Adaptive Immune Responses in Advanced Mouse Atherosclerosis

Sarajo Mohanta; Changjun Yin; Li Peng; Prasad Srikakulapu; Vineela Bontha; Desheng Hu; Falk Weih; Christian Weber; Andreas J.R. Habenicht

Tertiary lymphoid organs emerge in tissues in response to nonresolving inflammation. Recent research characterized artery tertiary lymphoid organs in the aorta adventitia of aged apolipoprotein E–deficient mice. The atherosclerosis-associated lymphocyte aggregates are organized into distinct compartments, including separate T-cell areas harboring conventional, monocyte-derived, lymphoid, and plasmacytoid dendritic cells, as well as activated T-cell effectors and memory cells; B-cell follicles containing follicular dendritic cells in activated germinal centers; and peripheral niches of plasma cells. Artery tertiary lymphoid organs show marked neoangiogenesis, aberrant lymphangiogenesis, and extensive induction of high endothelial venules. Moreover, newly formed lymph node–like conduits connect the external lamina with high endothelial venules in T-cell areas and also extend into germinal centers. Mouse artery tertiary lymphoid organs recruit large numbers of naïve T cells and harbor lymphocyte subsets with opposing activities, including CD4+ and CD8+ effector and memory T cells, natural and induced CD4+ regulatory T cells, and memory B cells at different stages of differentiation. These data suggest that artery tertiary lymphoid organs participate in primary immune responses and organize T- and B-cell autoimmune responses in advanced atherosclerosis. In this review, we discuss the novel concept that pro- and antiatherogenic immune responses toward unknown arterial wall–derived autoantigens may be organized by artery tertiary lymphoid organs and that disruption of the balance between pro- and antiatherogenic immune cell subsets may trigger clinically overt atherosclerosis.


Atherosclerosis | 2009

Genetic and pharmacological inhibition of the 5-lipoxygenase/leukotriene pathway in atherosclerotic lesion development in ApoE deficient mice

Richard Y. Cao; Tim St. Amand; Rolf Gräbner; Andreas J.R. Habenicht; Colin D. Funk

The 5-lipoxygenase (5-LO) catalyzed formation of leukotriene (LT) lipid mediators is a pathway contributing to inflammatory events in asthma and more recently has been associated with cardiovascular disease. However, the relative impact of this pathway in atherogenesis has been controversial and a variety of mixed results reported. The goal of these studies was to assess the importance of the 5-LO/LT pathway in mice with either genetic (5-LO(-/-)) or pharmacological (L-739,010) inhibition of the 5-LO pathway on an apolipoprotein E deficient (apoE(-/-)) background when subjected to either an 8-week (Paigen) or 6 months (Western) atherosclerotic diet regimen. Atherosclerotic lesion analysis at the aortic root, brachiocephalic artery and throughout the whole aorta by en face Sudan IV staining was determined, as well as blood lipid levels. Ex vivo calcium ionophore-stimulation of whole blood demonstrated a significant reduction in the capacity to form LTB(4) in 5-LO(-/-) and drug-treated 5-LO(+/+) mice. Quantitative analysis of atherosclerotic lesions did not differ between groups at all three sites. Moreover, the composition of advanced lesions in the brachiocephalic arteries did not indicate altered plaque disruption as a result of 5-LO gene inactivation. These results do not support a role for the 5-LO/LT pathway in intermediate to advanced atherosclerotic lesion development in mice.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2003

Amino Acid Differences in the Deduced 5-Lipoxygenase Sequence of CAST Atherosclerosis-Resistance Mice Confer Impaired Activity When Introduced Into the Human Ortholog

Hartmut Kuhn; Monika Anton; Christa Gerth; Andreas J.R. Habenicht

Objectives—The mouse strain CON6, which was generated by breeding athero-resistant CAST mice into an athero-susceptible B6 background, exhibits almost complete resistance to atherosclerosis. An athero-resistance gene cluster has been localized at the central region of chromosome 6, and among the candidate genes of this locus, the 5-lipoxygenase has attracted particular attention because of its involvement in the biosynthesis of proinflammatory leukotrienes. Comparison of 5-lipoxygenase genomic sequences of B6 and CON6 mice indicated 2 conserved amino acid exchanges in the CON6 animals, but the functional impact of these mutations has not been defined. Methods and Results—We analyzed the functionality of these amino acid exchanges relative to essential catalytic properties (specific activity, substrate affinity, and reaction specificity) and found that these mutations confer an impaired lipoxygenase and leukotriene A4-synthase activity when introduced into the human enzyme. In contrast, substrate affinity, enantiomer selectivity, and positional specificity remained unchanged. Conclusions—These data are consistent with the possibility that naturally occurring conservative mutations in the coding region of the murine 5-lipoxygenase gene can significantly affect enzyme activity and that this loss of function may be involved in CAST/CON6 athero-resistance.

Collaboration


Dive into the Andreas J.R. Habenicht's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gwendalyn J. Randolph

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pasquale Maffia

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Molly A. Ingersoll

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge