Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andreas Jekle is active.

Publication


Featured researches published by Andreas Jekle.


Antimicrobial Agents and Chemotherapy | 2011

Development of Tetravalent, Bispecific CCR5 Antibodies with Antiviral Activity against CCR5 Monoclonal Antibody-Resistant HIV-1 Strains

Jürgen Schanzer; Andreas Jekle; Jun-Ichi Nezu; Adriane Lochner; Rebecca Croasdale; Marianna Dioszegi; Jun Zhang; Eike Hoffmann; Wilma Dormeyer; Jan Olaf Stracke; Wolfgang Schäfer; Changhua Ji; Gabrielle Heilek; Nick Cammack; Michael Brandt; Pablo Umana; Ulrich Brinkmann

ABSTRACT In this study, we describe novel tetravalent, bispecific antibody derivatives that bind two different epitopes on the HIV coreceptor CCR5. The basic protein formats that we applied were derived from Morrison-type bispecific antibodies: whole IgGs to which we connected single-chain antibodies (scFvs) via (Gly4Ser)n sequences at either the C or N terminus of the light chain or heavy chain. By design optimization, including disulfide stabilization of scFvs or introduction of 30-amino-acid linkers, stable molecules could be obtained in amounts that were within the same range as or no less than 4-fold lower than those observed with monoclonal antibodies in transient expression assays. In contrast to monospecific CCR5 antibodies, bispecific antibody derivatives block two alternative docking sites of CCR5-tropic HIV strains on the CCR5 coreceptor. Consequently, these molecules showed 18- to 57-fold increased antiviral activities compared to the parent antibodies. Most importantly, one prototypic tetravalent CCR5 antibody had antiviral activity against virus strains resistant to the single parental antibodies. In summary, physical linkage of two CCR5 antibodies targeting different epitopes on the HIV coreceptor CCR5 resulted in tetravalent, bispecific antibodies with enhanced antiviral potency against wild-type and CCR5 antibody-resistant HIV-1 strains.


Bioorganic & Medicinal Chemistry Letters | 2009

Spiropiperidine CCR5 antagonists.

David Mark Rotstein; Stephen Deems Gabriel; Ferenc Makra; Lubov Filonova; Shelley K. Gleason; Christine E. Brotherton-Pleiss; Lina Setti; Alejandra Trejo-Martin; Eun Kyung Lee; Surya Sankuratri; Changhua Ji; André deRosier; Marianna Dioszegi; Gabrielle Heilek; Andreas Jekle; Pamela Berry; Paul Weller; Cheng-I. Mau

A novel series of CCR5 antagonists has been identified, utilizing leads from high-throughput screening which were further modified based on insights from competitor molecules. Lead optimization was pursued by balancing opposing trends of metabolic stability and potency. Selective and potent analogs with good pharmacokinetic properties were successfully developed.


Virology Journal | 2008

Closing two doors of viral entry: Intramolecular combination of a coreceptor- and fusion inhibitor of HIV-1

Erhard Kopetzki; Andreas Jekle; Changhua Ji; Eileen Rao; Jun Zhang; Stephan Fischer; Nick Cammack; Surya Sankuratri; Gabrielle Heilek

We describe a novel strategy in which two inhibitors of HIV viral entry were incorporated into a single molecule. This bifunctional fusion inhibitor consists of an antibody blocking the binding of HIV to its co-receptor CCR5, and a covalently linked peptide which blocks envelope mediated virus-cell fusion. This novel bifunctional molecule is highly active on CCR5- and X4-tropic viruses in a single cycle assay and a reporter cell line with IC50 values of 0.03–0.05 nM. We demonstrated that both inhibitors contribute to the antiviral activity. In the natural host peripheral blood mononuclear cells (PBMC) the inhibition of CXCR4-tropic viruses is dependant on the co-expression of CCR5 and CXCR4 receptors. This bifunctional inhibitor may offer potential for improved pharmacokinetic parameters for a fusion inhibitor in humans and the combination of two active antiviral agents in one molecule may provide better durability in controlling the emergence of resistant viruses.


Antimicrobial Agents and Chemotherapy | 2012

Antimicrobial and Anticoagulant Activities of N-Chlorotaurine, N,N-Dichloro-2,2-Dimethyltaurine, and N-Monochloro-2,2-Dimethyltaurine in Human Blood

C. Martini; A. Hammerer-Lercher; Meghan Zuck; Andreas Jekle; Dmitri Debabov; Mark S. Anderson; Markus Nagl

ABSTRACT The aim of this study was to determine the potential application of N-chlorotaurine (NCT), N,N-dichloro-2,2-dimethyltaurine (NVC-422), and N-monochloro-2,2-dimethyltaurine (NVC-612) as catheter lock solutions for the prevention of catheter blockage and catheter-related bloodstream infections by testing their anticoagulant and broad-spectrum antimicrobial activities in human blood. NCT, NVC-422, NVC-612, and control compounds were serially diluted in fresh human blood to evaluate the effects on prothrombin time, activated partial thromboplastin time, thrombin time, fibrinogen, and direct thrombin inhibition. Quantitative killing assays against pathogens, including methicillin-resistant Staphylococcus aureus, Escherichia coli, and Candida albicans, were performed in the presence of heparin and human blood. NCT and NVC-612 (1.38 mM each) and 1.02 mM NVC-422 prolonged prothrombin time (Quick value, 17 to 30%), activated partial thromboplastin time 3- to 4-fold to 76 to 125 s, and thrombin time 2- to 4-fold to 34 to 68 s. Fibrinogen decreased from 258 to 283 mg/dl (range of controls) to <40 mg/dl. No direct thrombin inhibition was observed by NVC-422 or NVC-612. Heparin did not influence the bactericidal activity of NCT. The microbicidal activities of NCT, NVC-422, and NVC-612 were maintained in diluted human blood. NCT, NVC-612, and NVC-422 have broad-spectrum antimicrobial activity in blood and anticoagulant activity targeting both intrinsic and extrinsic pathways of the coagulation system. These properties support their application as catheter lock solutions.


International Forum of Allergy & Rhinology | 2012

Efficacy of NVC-422 against Staphylococcus aureus biofilms in a sheep biofilm model of sinusitis†‡

Deepti Singhal; Andreas Jekle; Dmitri Debabov; Li Wang; Bez Khosrovi; Mark B. Anderson; Andrew Foreman; Peter-John Wormald

BACKGROUND Bacterial biofilms are a major obstacle in management of recalcitrant chronic rhinosinusitis. NVC-422 is a potent, fast-acting, broad-spectrum, nonantibiotic, antimicrobial with a new mechanism of action effective against biofilm bacteria in in vitro conditions. The aim of this study was to investigate the safety and efficacy of NVC-422 as local antibiofilm treatment in a sheep model of rhinosinusitis. METHODS After accessing and occluding frontal sinus ostia in 24 merino sheep via staged endoscopic procedures, S. aureus clinical isolate was instilled in frontal sinuses. Following biofilm formation, ostial obstruction was removed and sinuses irrigated with 0.1% and 0.5% NVC-422 in 5 mM acetate isotonic saline at pH 4.0. Sheep were monitored for adverse effects and euthanized 24 hours after treatment. Frontal sinuses were assessed for infection and changes in mucosa after the treatment. S. aureus biofilms were identified with Baclight-confocal scanning microscopy protocol and the biofilm biomass assayed by applying the COMSTAT2 program to recorded image stacks. RESULTS After 2 irrigations with 0.1% NVC-422, S. aureus biofilm biomass was reduced when compared to control sinuses (p = 0.0001), though this effect was variable in samples. NVC-422 0.5% solution irrigations reduced biofilm even more significantly and consistently over all samples (p < 0.0001). NVC-422 0.5% was also more effective than 0.1% NVC-422, vehicle control, and normal saline sinus irrigations in reducing biofilm biomass (p < 0.05 for all subgroups). No adverse events were observed in sheep after sinus irrigations with 0.1% and 0.5% NVC-422 solutions. CONCLUSION NVC-422 is an effective topical agent against S. aureus biofilms, with dose-dependent efficacy in this animal model of biofilm-associated sinusitis.


Antiviral Research | 2011

Virucidal mechanism of action of NVC-422, a novel antimicrobial drug for the treatment of adenoviral conjunctivitis.

Jungjoo Yoon; Andreas Jekle; Ramin Najafi; Francis S. Ruado; Meghan Zuck; Behzad Khosrovi; Bahram Memarzadeh; Dmitri Debabov; Lu Wang; Mark S. Anderson

Human adenoviral conjunctivitis is a highly contagious eye infection affecting millions of people world-wide. If untreated, it can further develop into keratitis, corneal ulceration, scarring and possible blindness. Despite the significant patient morbidity and socio-economic costs, it is an unmet medical need with no FDA approved treatment. Here, we demonstrate the virucidal activity of NVC-422 (N,N-dichloro-2,2-dimethyltaurine) against adenovirus type 5 (Ad5) and investigated its mechanism of action of Ad5 inactivation. NVC-422 inhibits Ad5-induced loss of cell viability in vitro with 50% inhibitory concentration (IC(50)) ranging from 9 to 23 μM. NVC-422 does not cause any cytotoxicity at concentrations as high as 250 μM. Invitro, NVC-422 inactivates Ad5 but does not interfere with viral replication, indicating that NVC-422 acts on the extracellular adenovirus as a virucidal agent. NVC-422 inactivates Ad5 by oxidative inactivation of key viral proteins such as fiber and hexon as evidenced by SDS-PAGE, Western blotting and reversed-phase HPLC. These data, combined with measurements of the kinetics of the NVC-422 reactivity with selected amino acids, indicate that the changes in the viral proteins are caused by the selective oxidation of sulfur-containing amino acids. The conformational changes of the viral proteins result in the destruction of the viral morphology as shown by transmission electron microscopy. In summary, NVC-422 exhibits virucidal activity against Ad5 by the oxidative inactivation of key viral proteins, leading to the loss of viral integrity and infectivity.


Bioorganic & Medicinal Chemistry Letters | 2010

Evaluation of secondary amide replacements in a series of CCR5 antagonists as a means to increase intrinsic membrane permeability. Part 1: Optimization of gem-disubstituted azacycles

Remy Lemoine; Ann C. Petersen; Lina Setti; Jutta Wanner; Andreas Jekle; Gabrielle Heilek; André deRosier; Changhua Ji; Pamela Berry; David Mark Rotstein

Replacement of a secondary amide with an N-acyl or N-sulfonyl gem-disubstituted azacyle in a series of CCR5 antagonists led to the identification of compounds with excellent in vitro HIV antiviral activity and increased intrinsic membrane permeability.


Antiviral Research | 2009

CD4-BFFI: a novel, bifunctional HIV-1 entry inhibitor with high and broad antiviral potency.

Andreas Jekle; Eugene Chow; Erhard Kopetzki; Changhua Ji; Mei Jun Yan; Rosa Nguyen; Surya Sankuratri; Nick Cammack; Gabrielle Heilek

Resistance to antiretroviral drugs is a common problem in the treatment of HIV-1-infected patients. To overcome resistance, we generated a novel, bifunctional HIV-1 entry inhibitor by combining the anti-CD4 monoclonal antibody (mAb) 6314 with a fusion inhibitor similar to T-651 (anti-CD4 mAb based BiFunctional Fusion Inhibitor, CD4-BFFI). CD4-BFFI has potent antiviral activity against a multitude of HIV-1 isolates independent of their co-receptor usage and genetic background. It has higher antiviral potency compared to the fusion inhibitor T-651 or the anti-CD4 mAb 6314 used independently. More importantly, every HIV-1 strain tested was fully inhibited by CD4-BFFI while many strains were only partially inhibited by 6314. CD4-BFFI also retained antiviral potency against virus strains resistant to two fusion inhibitors, a CCR5 antagonist and an anti-CCR5 mAb. Pre-incubation of cells with a saturating concentration of anti-CD4 mAbs reduced the antiviral potency of CD4-BFFI, suggesting that binding of CD4-BFFI to the cell surface via its CD4 mAb portion is required for the antiviral potency of its fusion inhibitor moiety. Collectively, we present a novel HIV-1 inhibitor with a dual mode of action and excellent antiviral potency against wildtype and entry-inhibitor resistant virus strains suggesting that CD4-BFFI may have a high barrier to resistance.


Journal of Medicinal Chemistry | 2016

Synthesis and Anti-Influenza Activity of Pyridine, Pyridazine, and Pyrimidine C-Nucleosides as Favipiravir (T-705) Analogues

Guangyi Wang; Jinqiao Wan; Yujian Hu; Xiangyang Wu; Marija Prhavc; Natalia B. Dyatkina; Vivek K. Rajwanshi; David W. Smith; Andreas Jekle; April Kinkade; Julian A. Symons; Zhinan Jin; Jerome Deval; Qingling Zhang; Yuen Tam; Sushmita Chanda; Lawrence M. Blatt; Leonid Beigelman

Influenza viruses are responsible for seasonal epidemics and occasional pandemics which cause significant morbidity and mortality. Despite available vaccines, only partial protection is achieved. Currently, there are two classes of widely approved anti-influenza drugs: M2 ion channel blockers and neuraminidase inhibitors. However, the worldwide spread of drug-resistant influenza strains poses an urgent need for novel antiviral drugs, particularly with a different mechanism of action. Favipiravir (T-705), a broad-spectrum antiviral agent, has shown potent anti-influenza activity in cell-based assays, and its riboside (2) triphosphate inhibited influenza polymerase. In one of our approaches to treat influenza infection, we designed, prepared, and tested a series of C-nucleoside analogues, which have an analogy to 2 and were expected to act by a similar antiviral mechanism as favipiravir. Compound 3c of this report exhibited potent inhibition of influenza virus replication in MDCK cells, and its triphosphate was a substrate of and demonstrated inhibitory activity against influenza A polymerase. Metabolites of 3c are also presented.


Bioorganic & Medicinal Chemistry Letters | 2010

Synthesis, SAR and evaluation of [1,4']-bipiperidinyl-4-yl-imidazolidin-2-one derivatives as novel CCR5 antagonists.

David Mark Rotstein; Stephen Deems Gabriel; Nicole Manser; Lubov Filonova; Fernando Padilla; Surya Sankuratri; Changhua Ji; André deRosier; Marianna Dioszegi; Gabrielle Heilek; Andreas Jekle; Paul Weller; Pamela Berry

Elaboration of our previously disclosed spiropiperidine template led to the development of a series of novel CCR5 antagonists. Results of SAR exploration and preliminary lead characterization are described.

Collaboration


Dive into the Andreas Jekle's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge