Andreas Karoly Gombert
State University of Campinas
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Andreas Karoly Gombert.
Journal of Bacteriology | 2001
Andreas Karoly Gombert; Margarida Moreira dos Santos; Bjarke Bak Christensen; Jens Nielsen
The network structure and the metabolic fluxes in central carbon metabolism were characterized in aerobically grown cells of Saccharomyces cerevisiae. The cells were grown under both high and low glucose concentrations, i.e., either in a chemostat at steady state with a specific growth rate of 0.1 h(-1) or in a batch culture with a specific growth rate of 0.37 h(-1). Experiments were carried out using [1-(13)C]glucose as the limiting substrate, and the resulting summed fractional labelings of intracellular metabolites were measured by gas chromatography coupled to mass spectrometry. The data were used as inputs to a flux estimation routine that involved appropriate mathematical modelling of the central carbon metabolism of S. cerevisiae. The results showed that the analysis is very robust, and it was possible to quantify the fluxes in the central carbon metabolism under both growth conditions. In the batch culture, 16.2 of every 100 molecules of glucose consumed by the cells entered the pentose-phosphate pathway, whereas the same relative flux was 44.2 per 100 molecules in the chemostat. The tricarboxylic acid cycle does not operate as a cycle in batch-growing cells, in contrast to the chemostat condition. Quantitative evidence was also found for threonine aldolase and malic enzyme activities, in accordance with published data. Disruption of the MIG1 gene did not cause changes in the metabolic network structure or in the flux pattern.
Applied Microbiology and Biotechnology | 2008
Gustavo Fonseca; Elmar Heinzle; Christoph Wittmann; Andreas Karoly Gombert
Strains belonging to the yeast species Kluyveromyces marxianus have been isolated from a great variety of habitats, which results in a high metabolic diversity and a substantial degree of intraspecific polymorphism. As a consequence, several different biotechnological applications have been investigated with this yeast: production of enzymes (β-galactosidase, β-glucosidase, inulinase, and polygalacturonases, among others), of single-cell protein, of aroma compounds, and of ethanol (including high-temperature and simultaneous saccharification-fermentation processes); reduction of lactose content in food products; production of bioingredients from cheese-whey; bioremediation; as an anticholesterolemic agent; and as a host for heterologous protein production. Compared to its congener and model organism, Kluyveromyces lactis, the accumulated knowledge on K. marxianus is much smaller and spread over a number of different strains. Although there is no publicly available genome sequence for this species, 20% of the CBS 712 strain genome was randomly sequenced (Llorente et al. in FEBS Lett 487:71–75, 2000). In spite of these facts, K. marxianus can envisage a great biotechnological future because of some of its qualities, such as a broad substrate spectrum, thermotolerance, high growth rates, and less tendency to ferment when exposed to sugar excess, when compared to K. lactis. To increase our knowledge on the biology of this species and to enable the potential applications to be converted into industrial practice, a more systematic approach, including the careful choice of (a) reference strain(s) by the scientific community, would certainly be of great value.
Process Biochemistry | 1999
Andreas Karoly Gombert; Annette L. Pinto; Leda R. Castilho; Denise Maria Guimarães Freire
Abstract Growth and enzyme production in SSF by a Brazilian strain of Penicillium restrictum was studied. Solid waste from the babassu oil industry was used as the basic nutrient source and was supplemented with peptone, olive oil or starch at different C/N ratios. The highest lipase activity (30.3 U/g initial dry weight) was achieved after 24 h of cultivation with 2% olive oil enrichment. Lipase activity was very sensitive to the kind and the level of supplementation, and decreased as protease level and pH in the media increased. Maximal levels of glucoamylase and protease were obtained with 4% starch enrichment, indicating that the type of carbon source supplemented to the basal medium determines the major enzymes produced.
Current Opinion in Biotechnology | 2000
Andreas Karoly Gombert; Jens Nielsen
Mathematical models of the cellular metabolism have a special interest within biotechnology. Many different kinds of commercially important products are derived from the cell factory, and metabolic engineering can be applied to improve existing production processes, as well as to make new processes available. Both stoichiometric and kinetic models have been used to investigate the metabolism, which has resulted in defining the optimal fermentation conditions, as well as in directing the genetic changes to be introduced in order to obtain a good producer strain or cell line. With the increasing availability of genomic information and powerful analytical techniques, mathematical models also serve as a tool for understanding the cellular metabolism and physiology.
Applied Biochemistry and Biotechnology | 2000
Márcia Brandão Palma; Annette L. Pinto; Andreas Karoly Gombert; Karina H. Seitz; Silvia C. Kivatinitz; Leda R. Castilho; Denise Maria Guimarães Freire
Lipase, protease, and amylase production by Penicillium restrictum in solid-state fermentation was investigated. The basal medium was an industrial waste of babassu oil (Orbignya oleifera) production. It was enriched with peptone, olive oil, and Tween-80. The supplementation positively influenced both enzyme production and fungal growth. Media enriched with Tween-80 provided the highest protease activity (8.6 U/g), whereas those enriched with peptone and olive oil led to the highest lipase (27.8 U/g) and amylase (31.8 U/g) activities, respectively.
Eukaryotic Cell | 2003
Margarida Moreira dos Santos; Andreas Karoly Gombert; Bjarke Bak Christensen; Lisbeth Olsson; Jens Nielsen
ABSTRACT A detailed characterization of the central metabolic network of Saccharomyces cerevisiae CEN.PK 113-7D was carried out during cometabolism of different mixtures of glucose and acetate, using aerobic C-limited chemostats in which one of these two substrates was labeled with 13C. To confirm the role of malic enzyme, an isogenic strain with the corresponding gene deleted was grown under the same conditions. The labeling patterns of proteinogenic amino acids were analyzed and used to estimate metabolic fluxes and/or make inferences about the in vivo activities of enzymes of the central carbon metabolism and amino acid biosynthesis. Malic enzyme flux increased linearly with increasing acetate fraction. During growth on a very-high-acetate fraction, the activity of malic enzyme satisfied the biosynthetic needs of pyruvate in the mitochondria, while in the cytosol pyruvate was supplied via pyruvate kinase. In several cases enzyme activities were unexpectedly detected, e.g., the glyoxylate shunt for a very-low-acetate fraction, phosphoenolpyruvate carboxykinase for an acetate fraction of 0.46 C-mol of acetate/C-mol of substrate, and glucose catabolism to CO2 via the tricarboxylic acid cycle for a very-high-acetate fraction. Cytoplasmic alanine aminotransferase activity was detected, and evidence was found that α-isopropylmalate synthase has two active forms in vivo, one mitochondrial and the other a short cytoplasmic form.
Journal of Biotechnology | 1998
Andreas Karoly Gombert; Beatriz Vahan Kilikian
The use of lactose as inducer of foreign gene expression under control of the lac UV5 promoter was investigated in recombinant Escherichia coli. Chicken muscle troponin C (TnC) gene was transcripted by T7 RNA polymerase and expressed in bioreactor cultivations after a feed-forward controlled fed-batch growth phase. Cell concentrations of 22 g l-1 dry cell weight (DCW)--before induction started--were used to achieve a TnC content of 19.5% of total cell protein through an induction strategy that combined the addition of a specific lactose amount of 4.7 g g-1 DCW divided into three pulses and the addition of yeast extract (1 g l-1) together with the second and the third lactose pulses. The results presented suggest that the residual lactose concentration plays an important role on the production of the heterologous protein.
Yeast | 2004
Vijayendran Raghevendran; Andreas Karoly Gombert; Bjarke Christensen; Peter Kötter; Jens Nielsen
In the field of metabolic engineering and functional genomics, methods for analysis of metabolic fluxes in the cell are attractive as they give an overview of the phenotypic response of the cells at the level of the active metabolic network. This is unlike several other high‐throughput experimental techniques, which do not provide information about the integrated response a specific genetic modification has on the cellular function. In this study we have performed phenotypic characterization of several mutants of the yeast Saccharomyces cerevisiae through the use of experiments with 13C‐labelled glucose. Through GC–MS analysis of the 13C incorporated into the amino acids of cellular proteins, it was possible to obtain quantitative information on the function of the central carbon metabolism in the different mutants. Traditionally, such labelling data have been used to quantify metabolic fluxes through the use of a suitable mathematical model, but here we show that the raw labelling data may also be used directly for phenotypic characterization of different mutant strains. Different glucose derepressed strains investigated employed are the disruption mutants reg1, hxk2, grr1, mig1 and mig1mig2 and the reference strain CEN.PK113‐7D. Principal components analysis of the summed fractional labelling data show that deleting the genes HXK2 and GRR1 results in similar phenotype at the fluxome level, with a partial alleviation of glucose repression on the respiratory metabolism. Furthermore, deletion of the genes MIG1, MIG1/MIG2 and REG1 did not result in a significant change in the phenotype at the fluxome level. Copyright
Metabolic Engineering | 2009
Diana M. Harris; Ilja Westerlaken; Dick Schipper; Zita A. van der Krogt; Andreas Karoly Gombert; John D. Sutherland; Leonie M. Raamsdonk; Marco van den Berg; Roel A. L. Bovenberg; Jack T. Pronk; Jean-Marc Daran
Penicillium chrysogenum was successfully engineered to produce a novel carbamoylated cephalosporin that can be used as a synthon for semi-synthetic cephalosporins. To this end, genes for Acremonium chrysogenum expandase/hydroxylase and Streptomyces clavuligerus carbamoyltransferase were expressed in a penicillinG high-producing strain of P.chrysogenum. Growth of the engineered strain in the presence of adipic acid resulted in production of adipoyl-7-amino-3-carbamoyloxymethyl-3-cephem-4-carboxylic acid (ad7-ACCCA) and of several adipoylated pathway intermediates. A combinatorial chemostat-based transcriptome study, in which the ad7-ACCCA-producing strain and a strain lacking key genes in beta-lactam synthesis were grown in the presence and absence of adipic acid, enabled the dissection of transcriptional responses to adipic acid per se and to ad7-ACCCA production. Transcriptome analysis revealed that adipate catabolism in P.chrysogenum occurs via beta-oxidation and enabled the identification of putative genes for enzymes involved in mitochondrial and peroxisomal beta-oxidation pathways. Several of the genes that showed a specifically altered transcript level in ad7-ACCCA-producing cultures were previously implicated in oxidative stress responses.
Journal of Bioenergetics and Biomembranes | 2008
Graciele A. Oliveira; Erich B. Tahara; Andreas Karoly Gombert; Mario H. Barros; Alicia J. Kowaltowski
Calorie restriction is a dietary regimen capable of extending life span in a variety of multicellular organisms. A yeast model of calorie restriction has been developed in which limiting the concentration of glucose in the growth media of Saccharomyces cerevisiae leads to enhanced replicative and chronological longevity. Since S. cerevisiae are Crabtree-positive cells that present repression of aerobic catabolism when grown in high glucose concentrations, we investigated if this phenomenon participates in life span regulation in yeast. S. cerevisiae only exhibited an increase in chronological life span when incubated in limited concentrations of glucose. Limitation of galactose, raffinose or glycerol plus ethanol as substrates did not enhance life span. Furthermore, in Kluyveromyces lactis, a Crabtree-negative yeast, glucose limitation did not promote an enhancement of respiratory capacity nor a decrease in reactive oxygen species formation, as is characteristic of conditions of caloric restriction in S. cerevisiae. In addition, K. lactis did not present an increase in longevity when incubated in lower glucose concentrations. Altogether, our results indicate that release from repression of aerobic catabolism is essential for the beneficial effects of glucose limitation in the yeast calorie restriction model. Potential parallels between these changes in yeast and hormonal regulation of respiratory rates in animals are discussed.